242 resultados para Information interfaces and presentation: Miscellaneous.
Resumo:
The gathering of people in everyday life is intertwined with travelling to negotiated locations. As a result, mobile phones are often used to rearrange meetings when one or more participants are late or cannot make it on time. Our research is based on the hypothesis that the provision of location data can enhance the experience of people who are meeting each other in different locations. This paper presents work-in-progress on a novel approach to share one’s location data in real-time which is visualised on a web-based map in a privacy conscious way. Disposable Maps allows users to select contacts from their phone’s address book who then receive up-to-date location data. The utilisation of peer-to-peer notifications and the application of unique URLs for location storage and presentation enable location sharing whilst ensuring users’ location privacy. In contrast to other location sharing services like Google Latitude, Disposable Maps enables ad hoc location sharing to actively selected location receivers for a fixed period of time in a specific given situation. We present first insights from an initial application user test and show future work on the approach of disposable information allocation.
Resumo:
The full economic, cultural and environmental value of information produced or funded by the public sector can be realised through enabling greater access to and reuse of the information. To do this effectively it is necessary to describe and implement a policy framework that supports greater access and reuse among a distributed, online network of information suppliers and users. The objective of this study was to identify materials dealing with policies, principles and practices relating to information access and reuse in Australia and in other key jurisdictions internationally. Open Access Policies, Practices and Licensing: A review of the literature in Australia and selected jurisdictions sets out the findings of an extensive review of published materials dealing with policies, practices and legal issues relating to information access and reuse, with a particular focus on materials generated, held or funded by public sector bodies. The report was produced as part of the work program of the project “Enabling Real-Time Information Access in Both Urban and Regional Areas”, established within the Cooperative Research Centre for Spatial Information (CRCSI).
Resumo:
Generative media systems present an opportunity for users to leverage computational systems to make sense of complex media forms through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. These kinds of systems present a range of affordances that can facilitate new kinds of relationships with music and media performance and production. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences to users with little formal musical or artistic expertise. This paper examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensemble with very little musical knowledge or skill and they further offer the possibility of unique interactive relationships with artists and musical knowledge through collaborative performance. In this presentation I will focus on demonstrating how these simulated experiences might lead to understandings that may be of educational and social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to view video artifacts that demonstrate an interactive relationship with artists.
Resumo:
The world’s population is ageing rapidly. Ageing has an impact on all aspects of human life, including social, economic, cultural, and political. Understanding ageing is therefore an important issue for the 21st century. This chapter will consider the active ageing model. This model is based on optimising opportunities for health, participation, and security in order to enhance quality of life. There is a range of exciting options developing for personal health management, for and by the ageing population, that make use of computer technology, and these should support active ageing. Their use depends however on older people learning to use computer technology effectively. The ability to use such technology will allow them to access relevant health information, advice, and support independently from wherever they live. Such support should increase rapidly in the future. This chapter is a consideration of ageing and learning, ageing and use of computer technology, and personal health management using computers.
Resumo:
This presentation describes a situation where an open access mandate was developed and implemented at an institutional level, in this case, an Australian University. Some conclusions are drawn about its effect over a five year period of implementation.
Resumo:
This study explores whether the relation between internal audit quality and firm performance is associated with firm characteristics of information asymmetry and uncertainty (growth opportunities) and certain governance controls (audit committee effectiveness). The results from this preliminary study of 60 Malaysian companies show that the association between internal audit quality and firm performance is stronger for firms with high growth opportunities and that this positive association is weakened by increasing audit committee independence. These findings demonstrate the internal auditors conflicting roles and question the governance recommendations that require all members of the audit committee to be non-executive directors.
Resumo:
As the paper’s subtitle suggests broadband has had a remarkably checkered trajectory in Australia. It was synonymous with the early 1990s information superhighway and seemed to presage a moment in which “content is [to be] king”. It disappeared almost entirely as a public priority in the mid to late 1990s as intrastructure and content were disconnected in services frameworks focused on information and communication technologies. And it came back in the 2000s as a critical infrastructure for innovation and the knowledge economy. But this time content was not king but rather an intermediate input at the service of innovating industries and processes. Broadband was a critical infrastructure for the digitally-based creative industries. Today the quality of the broadband infrastructure in Australia—itself an outcome of these different policy frameworks—is identified as “fraudband” holding back business, creativity and consumer uptake. In this paper I use the checkered trajectory of broadband on Australian political and policy horizons as a stepping off point to reflect on the ideas governing these changing governmental and public settings. This history enables me to explore how content and infrastructure are simultaneously connected and disconnected in our thinking. And, finally, I want to make some remarks about the way communication, particularly media communication, has been marginally positioned after being, initially so apparently central.
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
This qualitative study views international students as information-using learners, through an information literacy lens. Focusing on the experiences of 25 international students at two Australian universities, the study investigates how international students use online information resources to learn, and identifies associated information literacy learning needs. An expanded critical incident approach provided the methodological framework for the study. Building on critical incident technique, this approach integrated a variety of concepts and research strategies. The investigation centred on real-life critical incidents experienced by the international students whilst using online resources for assignment purposes. Data collection involved semi-structured interviews and an observed online resource-using task. Inductive data analysis and interpretation enabled the creation of a multifaceted word picture of international students using online resources and a set of critical findings about their information literacy learning needs. The study’s key findings reveal: • the complexity of the international students’ experience of using online information resources to learn, which involves an interplay of their interactions with online resources, their affective and reflective responses to using them, and the cultural and linguistic dimensions of their information use. • the array of strengths as well as challenges that the international students experience in their information use and learning. • an apparent information literacy imbalance between the international students’ more developed information skills and less developed critical and strategic approaches to using information • the need for enhanced information literacy education that responds to international students’ identified information literacy needs. Responding to the findings, the study proposes an inclusive informed learning approach to support reflective information use and inclusive information literacy learning in culturally diverse higher education environments.
Resumo:
Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.
Resumo:
The evolution of organisms that cause healthcare acquired infections (HAI) puts extra stress on hospitals already struggling with rising costs and demands for greater productivity and cost containment. Infection control can save scarce resources, lives, and possibly a facility’s reputation, but statistics and epidemiology are not always sufficient to make the case for the added expense. Economics and Preventing Healthcare Acquired Infection presents a rigorous analytic framework for dealing with this increasingly serious problem. ----- Engagingly written for the economics non-specialist, and brimming with tables, charts, and case examples, the book lays out the concepts of economic analysis in clear, real-world terms so that infection control professionals or infection preventionists will gain competence in developing analyses of their own, and be confident in the arguments they present to decision-makers. The authors: ----- Ground the reader in the basic principles and language of economics. ----- Explain the role of health economists in general and in terms of infection prevention and control. ----- Introduce the concept of economic appraisal, showing how to frame the problem, evaluate and use data, and account for uncertainty. ----- Review methods of estimating and interpreting the costs and health benefits of HAI control programs and prevention methods. ----- Walk the reader through a published economic appraisal of an infection reduction program. ----- Identify current and emerging applications of economics in infection control. ---- Economics and Preventing Healthcare Acquired Infection is a unique resource for practitioners and researchers in infection prevention, control and healthcare economics. It offers valuable alternate perspective for professionals in health services research, healthcare epidemiology, healthcare management, and hospital administration. ----- Written for: Professionals and researchers in infection control, health services research, hospital epidemiology, healthcare economics, healthcare management, hospital administration; Association of Professionals in Infection Control (APIC), Society for Healthcare Epidemiologists of America (SHEA)
Resumo:
We argue that web service discovery technology should help the user navigate a complex problem space by providing suggestions for services which they may not be able to formulate themselves as (s)he lacks the epistemic resources to do so. Free text documents in service environments provide an untapped source of information for augmenting the epistemic state of the user and hence their ability to search effectively for services. A quantitative approach to semantic knowledge representation is adopted in the form of semantic space models computed from these free text documents. Knowledge of the user’s agenda is promoted by associational inferences computed from the semantic space. The inferences are suggestive and aim to promote human abductive reasoning to guide the user from fuzzy search goals into a better understanding of the problem space surrounding the given agenda. Experimental results are discussed based on a complex and realistic planning activity.
Resumo:
The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.
Resumo:
Recommender Systems is one of the effective tools to deal with information overload issue. Similar with the explicit rating and other implicit rating behaviours such as purchase behaviour, click streams, and browsing history etc., the tagging information implies user’s important personal interests and preferences information, which can be used to recommend personalized items to users. This paper is to explore how to utilize tagging information to do personalized recommendations. Based on the distinctive three dimensional relationships among users, tags and items, a new user profiling and similarity measure method is proposed. The experiments suggest that the proposed approach is better than the traditional collaborative filtering recommender systems using only rating data.