720 resultados para Flypaper effect
Resumo:
Background: Thirst and dry mouth are common among hemodialysis (HD) patients. This paper reports a study to evaluate the impact of an acupressure program on HD patients’ thirst and salivary flow rates. Methods: The acupressure program included placebo, followed by true acupressure each applied for 4 weeks. Twenty-eight patients (mean age 57.6, SD = 16.13 years) first received a sticker as placebo acupressure at two acupoints CV23 and TE17 three times a week for 4 weeks, and then received true acupressure in the same area for the next 4 weeks. Salivary flow rate and thirst intensity were measured at baseline, during and after treatment completion for both the placebo and true acupressure program. Results: The true acupressure program was associated with significantly increased salivary flow rate (0.09 ± 0.08 ml/min at baseline to 0.12 ± 0.08 ml/min after treatments completion, p = 0.04). The mean thirst intensity also improved from 4.21 ± 2.66 at baseline to 2.43 ± 2.32 (p = 0.008) after treatment completion in HD patients. There was no statistically significant difference in pre-post program salivary flow rate; however, significant improvement in thirst intensity scores was observed (p = 0.009) in the placebo acupressure program. Conclusion: This study provides preliminary evidence that acupressure may be effective in improving salivary flow rates and thirst intensity.
Resumo:
Raman spectra of the uranyl titanate mineral davidite-(La) (La,Ce)(Y,U,Fe2+)(Ti,Fe3+)20(O,OH)38 were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of davidite-(La) are in harmony with those of the uranyl oxyhydroxides. The mineral davidite-(La) is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
This study investigates the links between product innovation and external collaboration and between future product innovation and past abandonment in small and medium sized firms. Our findings from 449 manufacturing firms indicated firms that sought ideas or solutions from an external network such as suppliers, or business partners reported higher levels of new product introduction than firms without any external collaboration. Further, firms with past abandonment experiences reported higher levels of new product introduction than firms without such experience. Additionally, the findings indicated that firms with external collaboration were more likely to introduce new products even if they had previously experienced abandonment of a product innovation than firms without external collaboration. Implications, limitations and future research are outlined.
Resumo:
The effect of bentonite micro-particles and cationic polyacrylamide (CPAM) on the filtration properties of bagasse pulp was investigated under shearing conditions. CPAM improves retention but the bentonite addition level must be optimised for further improvements in retention. A Dynamic Drainage Jar (‘Britt Jar’) was modified to allow bagasse pulp slurry to be subjected to vacuum allowing a thin pulp pad to be formed. Bagasse pulp which had had the majority of the fine fibre removed prior to pulping drained more quickly than a conventional bagasse pulp when vacuum was not applied, however this situation was reversed when vacuum was used. The flocculants continue to improve fibre retention under vacuum and shear conditions but with reduced effectiveness.
Resumo:
Engineering graduates of today are required to adapt to a rapidly changing work environment. In particular, they are expected to demonstrate enhanced capabilities in both mono-disciplinary and multi-disciplinary teamwork environments. Engineering education needs, as a result, to further focus on developing group work capabilities amongst engineering graduates. Over the last two years, the authors trialed various group work strategies across two engineering disciplines. In particular, the effect of group formation on students' performance, task management, and social loafing was analyzed. A recently developed online teamwork management tool, Teamworker, was used to collect students' experience of the group work. Analysis showed that students who were allowed to freely allocate to any group were less likely to report loafing from other team members, than students who were pre-allocated to a group. It also showed that performance was more affected by the presence or absence of a leader in pre-allocated rather than free-allocated groups.
Resumo:
Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.
Resumo:
This study explores the effects of use-simulated and peripheral placements in video games on attitude to the brand. Results indicate that placements do not lead to enhanced brand attitude, even when controlling for involvement and skill. It appears this is due to constraints on brand information processing in a game context.
Resumo:
PURPOSE: This study investigated the effects of simulated visual impairment on nighttime driving performance and pedestrian recognition under real-road conditions. METHODS: Closed road nighttime driving performance was measured for 20 young visually normal participants (M = 27.5 +/- 6.1 years) under three visual conditions: normal vision, simulated cataracts, and refractive blur that were incorporated in modified goggles. The visual acuity levels for the cataract and blur conditions were matched for each participant. Driving measures included sign recognition, avoidance of low contrast road hazards, time to complete the course, and lane keeping. Pedestrian recognition was measured for pedestrians wearing either black clothing or black clothing with retroreflective markings on the moveable joints to create the perception of biological motion ("biomotion"). RESULTS: Simulated visual impairment significantly reduced participants' ability to recognize road signs, avoid road hazards, and increased the time taken to complete the driving course (p < 0.05); the effect was greatest for the cataract condition, even though the cataract and blur conditions were matched for visual acuity. Although visual impairment also significantly reduced the ability to recognize the pedestrian wearing black clothing, the pedestrian wearing "biomotion" was seen 80% of the time. CONCLUSIONS: Driving performance under nighttime conditions was significantly degraded by modest visual impairment; these effects were greatest for the cataract condition. Pedestrian recognition was greatly enhanced by marking limb joints in the pattern of "biomotion," which was relatively robust to the effects of visual impairment.
Resumo:
Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.
Resumo:
Background: Assessments of change in subjective patient reported outcomes such as health-related quality of life (HRQoL) are a key component of many clinical and research evaluations. However, conventional longitudinal evaluation of change may not agree with patient perceived change if patients' understanding of the subjective construct under evaluation changes over time (response shift) or if patients' have inaccurate recollection (recall bias). This study examined whether older adults' perception of change is in agreement with conventional longitudinal evaluation of change in their HRQoL over the duration of their hospital stay. It also investigated this level of agreement after adjusting patient perceived change for recall bias that patients may have experienced. Methods: A prospective longitudinal cohort design nested within a larger randomised controlled trial was implemented. 103 hospitalised older adults participated in this investigation at a tertiary hospital facility. The EQ-5D utility and Visual Analogue Scale (VAS) scores were used to evaluate HRQoL. Participants completed EQ-5D reports as soon as they were medically stable (within three days of admission) then again immediately prior to discharge. Three methods of change score calculation were used (conventional change, patient perceived change and patient perceived change adjusted for recall bias). Agreement was primarily investigated using intraclass correlation coefficients (ICC) and limits of agreement. Results: Overall 101 (98%) participants completed both admission and discharge assessments. The mean (SD) age was 73.3 (11.2). The median (IQR) length of stay was 38 (20-60) days. For agreement between conventional longitudinal change and patient perceived change: ICCs were 0.34 and 0.40 for EQ-5D utility and VAS respectively. For agreement between conventional longitudinal change and patient perceived change adjusted for recall bias: ICCs were 0.98 and 0.90 respectively. Discrepancy between conventional longitudinal change and patient perceived change was considered clinically meaningful for 84 (83.2%) of participants, after adjusting for recall bias this reduced to 8 (7.9%). Conclusions: Agreement between conventional change and patient perceived change was not strong. A large proportion of this disagreement could be attributed to recall bias. To overcome the invalidating effect of response shift (on conventional change) and recall bias (on patient perceived change) a method of adjusting patient perceived change for recall bias has been described.
Resumo:
Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.
Resumo:
Hydrotalcites have been synthesised using three different pH solutions to assess the effect of pH on the uptake of arsenate and vanadate. The ability of these hydrotalcites to remove vanadate and arsenate from solution has been determined by ICP-OES. Raman spectroscopy is used to monitor changes in the anionic species for hydrotalcites synthesised at different pH values. The results show a reduction in the concentration of arsenate and vanadate anions that are removed in extremely alkaline solutions. Hydrotalcites containing arsenate and vanadate are stable in solutions up to pH 10. Exposure of these hydrotalcites to higher pH values results in the removal of large percentages of arsenate and vanadate from the hydrotalcite interlayer.
Resumo:
Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Resumo:
Objective Alcohol-related implicit (preconscious) cognitive processes are established and unique predictors of alcohol use, but most research in this area has focused on alcohol-related implicit cognition and anxiety. This study extends this work into the area of depressed mood by testing a cognitive model that combines traditional explicit (conscious and considered) beliefs, implicit alcohol-related memory associations (AMAs), and self-reported drinking behavior. Method Using a sample of 106 university students, depressed mood was manipulated using a musical mood induction procedure immediately prior to completion of implicit then explicit alcohol-related cognition measures. A bootstrapped two-group (weak/strong expectancies of negative affect and tension reduction) structural equation model was used to examine how mood changes and alcohol-related memory associations varied across groups. Results Expectancies of negative affect moderated the association of depressed mood and AMAs, but there was no such association for tension reduction expectancy. Conclusion Subtle mood changes may unconsciously trigger alcohol-related memories in vulnerable individuals. Results have implications for addressing subtle fluctuations in depressed mood among young adults at risk of alcohol problems.
Resumo:
The presence of calcium hydroxide (Ca(OH)2) in Bayer residue slurry inhibits the effectiveness of the seawater neutralisation process to reduce the pH and aluminium concentration in the residue. An increase in the slurry pH (reversion), after seawater neutralisation, is caused by the dissolution of calcium hydroxide and hydrocalumite (solid components found in bauxite refinery residue). Reversion was not observed when the final solution pH was greater than 10.5, due to hydrocalumite being in a state of equilibrium at high pH. Hydrocalumite has been found to form during the neutralisation process when high concentrations of calcium hydroxide are present in the residue liquor. The dissolution of hydrocalumite releases hydroxyl (OH-) and aluminium ions back into solution after the seawater neutralisation (SWN) process, which causes pH and aluminium reversion to occur. This investigation looks at the effect of Ca(OH)2 and subsequently hydrocalumite on the pH and aluminium concentration in bauxite refinery residue liquors after the SWN process.