154 resultados para Fat deposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. © 2015 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of ethanol (C2H5OH) as carbon source in the Chemical Vapor Deposition (CVD) of graphene on copper foils can be considered as an attractive alternative among the commonly used hydrocarbons, such as methane (CH4) [1]. Ethanol, a safe, low cost and easy handling liquid precursor, offers fast and efficient growth kinetics with the synthesis of fullyformed graphene films in just few seconds [2]. In previous studies of graphene growth from ethanol, various research groups explored temperature ranges lower than 1000 °C, usually reported for methane-assisted CVD. In particular, the 650–850 °C and 900 °C ranges were investigated, respectively for 5 and 30 min growth time [3, 4]. Recently, our group reported the growth of highly-crystalline, few-layer graphene by ethanol-CVD in hydrogen flow (1– 100 sccm) at high temperatures (1000–1070 °C) using growth times typical of CH4-assisted synthesis (10–30 min) [5]. Furthermore, a synthesis time between 20 and 60 s in the same conditions was explored too. In such fast growth we demonstrated that fully-formed graphene films can be grown by exposing copper foils to a low partial pressure of ethanol (up to 2 Pa) in just 20 s [6] and we proposed that the rapid growth is related to an increase of the Cu catalyst efficiency due weak oxidizing nature of ethanol. Thus, the employment of such liquid precursor, in small concentrations, together with a reduced time of growth and very low pressure leads to highly efficient graphene synthesis. By this way, the complete coverage of a copper catalyst surface with high spatial uniformity can be obtained in a considerably lower time than when using methane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti3Si(Al)C2 films were electrophoretically deposited at 3 V on indium-tin-oxide (ITO) conductive glass from Ti3Si(Al) C2 aqueous suspension with 1 vol% solid loading at pH 9 in the absence of any dispersant. The surface morphology, cross section microstructure, and preferred orientation of the films were investigated by scanning electron microscopy and X-ray diffraction. The as-deposited Ti3Si(Al)C 2 films exhibited (00l) preferred orientation and the thickness can be controlled by the deposition-drying-deposition method. These results demonstrate that electrophoretic deposition is a simple and feasible method to prepare MAX-phases green films at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used B-mode (brightness-mode) ultrasound to investigate the fascial planes within subcutaneous fat at the triceps and abdominal sites in a group of 17 women attending a weight control group over a 12 month period. In most subjects there was a single intralipid fascial plane at each site. As the thickness of adipose tissue increased, most of the change at the abdominal site was in the deep rather than the superficial layer of fat. At the triceps site both deep and superficial layers increased. Our findings confirm the presence of two different layers in human subcutaneous fat at the triceps and abdominal sites. These layers have been shown to be functionally different in animals and our study supports this in humans at the abdominal site.