277 resultados para Electronic medication record
Resumo:
The recent decision of the Court of Appeal in AGL Sales (Qld) Pty Ltd v Dawson Sales Pty Ltd [2009] QCA 262 provides clear direction on the Court’s expectations of a party seeking leave to appeal a costs order.This decision is likely to impact upon common practice in relation to appeals against costs orders. It sends a clear message to trial judges that they should not give leave as of course when giving a judgment in relation to costs, and that parties seeking leave under s 253 of the Supreme Court Act 1995 (Qld) should make a separate application. The application should be supported by material presenting an arguable case that the trial judge made an error in the exercise of the discretion of the kind described in House v King (1936) 55 CLR 499. A different, and interesting, aspect of this appeal is that it was the first wholly electronic civil appeal. The court-provided technology had been adopted at trial, and the Court of Appeal dispensed with any requirement for hard copy appeal record books.
Resumo:
Graphene has promised many novel applications in nanoscale electronics and sustainable energy due to its novel electronic properties. Computational exploration of electronic functionality and how it varies with architecture and doping presently runs ahead of experimental synthesis yet provides insights into types of structures that may prove profitable for targeted experimental synthesis and characterization. We present here a summary of our understanding on the important aspects of dimension, band gap, defect, and interfacial engineering of graphene based on state-of-the-art ab initio approaches. Some most recent experimental achievements relevant for future theoretical exploration are also covered.
Resumo:
This paper presents an adaptive metering algorithm for enhancing the electronic screening (e-screening) operation at truck weight stations. This algorithm uses a feedback control mechanism to control the level of truck vehicles entering the weight station. The basic operation of the algorithm allows more trucks to be inspected when the weight station is underutilized by adjusting the weight threshold lower. Alternatively, the algorithm restricts the number of trucks to inspect when the station is overutilized to prevent queue spillover. The proposed control concept is demonstrated and evaluated in a simulation environment. The simulation results demonstrate the considerable benefits of the proposed algorithm in improving overweight enforcement with minimal negative impacts on nonoverweighed trucks. The test results also reveal that the effectiveness of the algorithm improves with higher truck participation rates in the e-screening program.
Resumo:
Analysis of fossils from cave deposits at Mount Etna (eastern-central Queensland) has established that a species-rich rainforest palaeoenvironment existed in that area during the middle Pleistocene. This unexpected finding has implications for several fields (e.g., biogeography/phylogeography of rainforest-adapted taxa, and the impact of climate change on rainforest communities), but it was unknown whether the Mount Etna sites represented a small refugial patch of rainforest or was more widespread. In this study numerous bone deposits in caves in north-east Queensland are analysed to reconstruct the environmental history of the area during the late Quaternary. Study sites are in the Chillagoe/Mitchell Palmer and Broken River/Christmas Creek areas. The cave fossil records in these study areas are compared with dated (middle Pleistocene-Holocene) cave sites in the Mount Etna area. Substantial taxonomic work on the Mount Etna faunas (particularly dasyurid marsupials and murine rodents) is also presented as a prerequisite for meaningful comparison with the study sites further north. Middle Pleistocene sites at Mount Etna contain species indicative of a rainforest palaeoenvironment. Small mammal assemblages in the Mount Etna rainforest sites (>500-280 ka) are unexpectedly diverse and composed almost entirely of new species. Included in the rainforest assemblages are lineages with no extant representatives in rainforest (e.g., Leggadina), one genus previously known only from New Guinea (Abeomelomys), and forms that appear to bridge gaps between related but morphologically-divergent extant taxa ('B-rat' and 'Pseudomys C'). Curiously, some taxa (e.g., Melomys spp.) are notable for their absence from the Mount Etna rainforest sites. After 280 ka the rainforest faunas are replaced by species adapted to open, dry habitats. At that time the extinct ‘rainforest’ dasyurids and rodents are replaced by species that are either extant or recently extant. By the late Pleistocene all ‘rainforest’ and several ‘dry’ taxa are locally or completely extinct, and the small mammal fauna resembles that found in the area today. The faunal/environmental changes recorded in the Mount Etna sites were interpreted by previous workers as the result of shifts in climate during the Pleistocene. Many samples from caves in the Chillagoe/Mitchell-Palmer and Broken River/Christmas Creek areas are held in the Queensland Museum’s collection. These, supplemented with additional samples collected in the field as well as samples supplied by other workers, were systematically and palaeoecologically analysed for the first time. Palaeoecological interpretation of the faunal assemblages in the sites suggests that they encompass a similar array of palaeoenvironments as the Mount Etna sites. ‘Rainforest’ sites at the Broken River are here interpreted as being of similar age to those at Mount Etna, suggesting the possibility of extensive rainforest coverage in eastern tropical Queensland during part of the Pleistocene. Likewise, faunas suggesting open, dry palaeoenvironments are found at Chillagoe, the Broken River and Mount Etna, and may be of similar age. The 'dry' faunal assemblage at Mount Etna (Elephant hole Cave) dates to 205-170 ka. Dating of one of the Chillagoe sites (QML1067) produced a maximum age for the deposit of approximately 200 ka, and the site is interpreted as being close to that age, supporting the interpretation of roughly contemporaneous deposition at Mount Etna and Chillagoe. Finally, study sites interpreted as being of late Pleistocene-Holocene age show faunal similarities to sites of that age near Mount Etna. This study has several important implications for the biogeography and phylogeography of murine rodents, and represents a major advance in the study of the Australian murine fossil record. Likewise the survey of the northern study areas is the first systematic analysis of multiple sites in those areas, and is thus a major contribution to knowledge of tropical Australian faunas during the Quaternary. This analysis suggests that climatic changes during the Pleistocene affected a large area of eastern tropical Queensland in similar ways. Further fieldwork and dating is required to properly analyse the geographical extent and timing of faunal change in eastern tropical Queensland.
Resumo:
Introduction The onset of Personally Controlled Electronic Health Records in Australia demand healthcare decision making processes to comprise, understand and accept electronic health records (EHR). Nurses play a key, central role in the healthcare decision making process and their perceptions and attitudes of EHRs are significant [1], which develop during their academic life. However, studies aimed at nursing students’ attitudes of EHRs are very limited [2-4]. A proper understanding of these attitudes and how they evolve with academic progress is important. This paper presents results from a survey conducted at a leading University in Queensland, Australia as a first step to filling this gap.
Resumo:
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of “old players” for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer.
Resumo:
This research was a step forward in developing a data integration framework for Electronic Health Records. The outcome of the research is a conceptual and logical Data Warehousing model for integrating Cardiac Surgery electronic data records. This thesis investigated the main obstacles for the healthcare data integration and proposes a data warehousing model suitable for integrating fragmented data in a Cardiac Surgery Unit.
Resumo:
Background and purpose: The purpose of the work presented in this paper was to determine whether patient positioning and delivery errors could be detected using electronic portal images of intensity modulated radiotherapy (IMRT). Patients and methods: We carried out a series of controlled experiments delivering an IMRT beam to a humanoid phantom using both the dynamic and multiple static field method of delivery. The beams were imaged, the images calibrated to remove the IMRT fluence variation and then compared with calibrated images of the reference beams without any delivery or position errors. The first set of experiments involved translating the position of the phantom both laterally and in a superior/inferior direction a distance of 1, 2, 5 and 10 mm. The phantom was also rotated 1 and 28. For the second set of measurements the phantom position was kept fixed and delivery errors were introduced to the beam. The delivery errors took the form of leaf position and segment intensity errors. Results: The method was able to detect shifts in the phantom position of 1 mm, leaf position errors of 2 mm, and dosimetry errors of 10% on a single segment of a 15 segment IMRT step and shoot delivery (significantly less than 1% of the total dose). Conclusions: The results of this work have shown that the method of imaging the IMRT beam and calibrating the images to remove the intensity modulations could be a useful tool in verifying both the patient position and the delivery of the beam.
Resumo:
Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.
Resumo:
Structural and electronic properties have been studied for Boron Nitride nanoribbons (BNNR) with both zigzag and armchair shaped edge (Z-BNNR and A-BNNR) by first-principle spin-polarized total energy calculations. We found that the energy band gap of Z-BNNR is indirect and decreases monotonically with the increasing ribbon width, whereas direct energy band gap oscillation was observed for A-BNNRs. Additionally, C-substitution at either single boron or nitrogen atom site in BNNRs could induce spontaneous magnetization. Our results could be potentially useful to design magnetic nano-devices based on BNNRs.
Resumo:
In this work, ab initio density functional theory (DFT) calculations are performed to study the structural and electronic properties of diazonium reagent functionalized (4, 4) single-walled carbon nanotube (SWCNT). We find the aryl group covalently bonds with SWCNT and prefers to be perpendicular to the side wall of nanotube. It has a rotational barrier of 0.35 eV around the formed aryl-tube bond axis and should be thermodynamically stable at room temperature. Additionally, new peaks appeared around the Fermi energy in the density of state (DOS) due to the weak band dispersion. Increasing of the coverage of the functional group will result in significant upshift of the Fermi level.
Resumo:
This research introduces the proposition that Electronic Dance Music’s beat-mixing function could be implemented to create immediacy in other musical genres. The inclusion of rhythmic sections at the beginning and end of each musical work created a ‘DJ friendly’ environment. The term used in this thesis to refer to the application of beat-mixing in Rock music is ‘ClubRock’. Collaboration between a number of DJs and Rock music professionals applied the process of beat-mixing to blend Rock tracks to produce a continuous ClubRock set. The DJ technique of beat-mixing Rock music transformed static renditions into a fluid creative work. The hybridisation of the two genres, EDM and Rock, resulted in a contribution to Rock music compositional approaches and the production of a unique Rock album; Manarays—Get Lucky.
Resumo:
Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.