298 resultados para Deteccion visual de lugares
Resumo:
In this paper we use a sequence-based visual localization algorithm to reveal surprising answers to the question, how much visual information is actually needed to conduct effective navigation? The algorithm actively searches for the best local image matches within a sliding window of short route segments or 'sub-routes', and matches sub-routes by searching for coherent sequences of local image matches. In contract to many existing techniques, the technique requires no pre-training or camera parameter calibration. We compare the algorithm's performance to the state-of-the-art FAB-MAP 2.0 algorithm on a 70 km benchmark dataset. Performance matches or exceeds the state of the art feature-based localization technique using images as small as 4 pixels, fields of view reduced by a factor of 250, and pixel bit depths reduced to 2 bits. We present further results demonstrating the system localizing in an office environment with near 100% precision using two 7 bit Lego light sensors, as well as using 16 and 32 pixel images from a motorbike race and a mountain rally car stage. By demonstrating how little image information is required to achieve localization along a route, we hope to stimulate future 'low fidelity' approaches to visual navigation that complement probabilistic feature-based techniques.
Resumo:
Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the single location most likely given a current image, our approach calculates the best candidate matching location within every local navigation sequence. Localization is then achieved by recognizing coherent sequences of these “local best matches”. This approach removes the need for global matching performance by the vision front-end - instead it must only pick the best match within any short sequence of images. The approach is applicable over environment changes that render traditional feature-based techniques ineffective. Using two car-mounted camera datasets we demonstrate the effectiveness of the algorithm and compare it to one of the most successful feature-based SLAM algorithms, FAB-MAP. The perceptual change in the datasets is extreme; repeated traverses through environments during the day and then in the middle of the night, at times separated by months or years and in opposite seasons, and in clear weather and extremely heavy rain. While the feature-based method fails, the sequence-based algorithm is able to match trajectory segments at 100% precision with recall rates of up to 60%.
Resumo:
Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.
Resumo:
Visual sea-floor mapping is a rapidly growing application for Autonomous Underwater Vehicles (AUVs). AUVs are well-suited to the task as they remove humans from a potentially dangerous environment, can reach depths human divers cannot, and are capable of long-term operation in adverse conditions. The output of sea-floor maps generated by AUVs has a number of applications in scientific monitoring: from classifying coral in high biological value sites to surveying sea sponges to evaluate marine environment health.
Resumo:
Purpose: To investigate the correlations of the global flash multifocal electroretinogram (MOFO mfERG) with common clinical visual assessments – Humphrey perimetry and Stratus circumpapillary retinal nerve fiber layer (RNFL) thickness measurement in type II diabetic patients. Methods: Forty-two diabetic patients participated in the study: ten were free from diabetic retinopathy (DR) while the remainder suffered from mild to moderate non-proliferative diabetic retinopathy (NPDR). Fourteen age-matched controls were recruited for comparison. MOFO mfERG measurements were made under high and low contrast conditions. Humphrey central 30-2 perimetry and Stratus OCT circumpapillary RNFL thickness measurements were also performed. Correlations between local values of implicit time and amplitude of the mfERG components (direct component (DC) and induced component (IC)), and perimetric sensitivity and RNFL thickness were evaluated by mapping the localized responses for the three subject groups. Results: MOFO mfERG was superior to perimetry and RNFL assessments in showing differences between the diabetic groups (with and without DR) and the controls. All the MOFO mfERG amplitudes (except IC amplitude at high contrast) correlated better with perimetry findings (Pearson’s r ranged from 0.23 to 0.36, p<0.01) than did the mfERG implicit time at both high and low contrasts across all subject groups. No consistent correlation was found between the mfERG and RNFL assessments for any group or contrast conditions. The responses of the local MOFO mfERG correlated with local perimetric sensitivity but not with RNFL thickness. Conclusion: Early functional changes in the diabetic retina seem to occur before morphological changes in the RNFL.
Resumo:
Aims/hypothesis: Impaired central vision has been shown to predict diabetic peripheral neuropathy (DPN). Several studies have demonstrated diffuse retinal neurodegenerative changes in diabetic patients prior to retinopathy development, raising the prospect that non-central vision may also be compromised by primary neural damage. We hypothesise that type 2 diabetic patients with DPN exhibit visual sensitivity loss in a distinctive pattern across the visual field, compared with a control group of type 2 diabetic patients without DPN. Methods: Increment light sensitivity was measured by standard perimetry in the central 30 degree of visual field for two age-matched groups of type 2 diabetic patients, with and without neuropathy (n=40/30). Neuropathy status was assigned using the neuropathy disability score. Mean visual sensitivity values were calculated globally, for each quadrant and for three eccentricities (0-10 degree , 11-20 degree and 21-30 degree ). Data were analysed using a generalised additive mixed model (GAMM). Results: Global and quadrant between-group visual sensitivity mean differences were marginally but consistently lower (by about 1 dB) in the neuropathy cohort compared with controls. Between-group mean differences increased from 0.36 to 1.81 dB with increasing eccentricity. GAMM analysis, after adjustment for age, showed these differences to be significant beyond 15 degree eccentricity and monotonically increasing. Retinopathy levels and disease duration were not significant factors within the model (p=0.90). Conclusions/interpretation: Visual sensitivity reduces disproportionately with increasing eccentricity in type 2 diabetic patients with peripheral neuropathy. This sensitivity reduction within the central 30 degree of visual field may be indicative of more consequential loss in the far periphery.
Resumo:
This paper presents a reactive Sense and Avoid approach using spherical image-based visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved without requiring an estimate of range. Simulated results for static and dynamic targets are provided using a realistic model of a small fixed wing unmanned aircraft.
Rotorcraft collision avoidance using spherical image-based visual servoing and single point features
Resumo:
This paper presents a reactive collision avoidance method for small unmanned rotorcraft using spherical image-based visual servoing. Only a single point feature is used to guide the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera model ensures the target always remains visible. A decision strategy to stop the avoidance control is derived based on the properties of spiral like motion, and the effect of accurate range measurements on the control scheme is discussed. We show that using a poor range estimate does not significantly degrade the collision avoidance performance, thus relaxing the need for accurate range measurements. We present simulated and experimental results using a small quad rotor to validate the approach.
Resumo:
PURPOSE: To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. METHODS: 36 visually normal participants (aged 19 – 80 years), completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields. and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus, and sensitivity for displacement in a random-dot kinematogram (Dmin). Participants also completed a hazard perception test (HPT) which measured participants’ response times to hazards embedded in video recordings of real world driving which has been shown to be linked to crash risk. RESULTS: Dmin for the random-dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random-dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. CONCLUSION: These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception in order to develop better interventions to improve road safety.
Resumo:
In various industrial and scientific fields, conceptual models are derived from real world problem spaces to understand and communicate containing entities and coherencies. Abstracted models mirror the common understanding and information demand of engineers, who apply conceptual models for performing their daily tasks. However, most standardized models in Process Management, Product Lifecycle Management and Enterprise Resource Planning lack of a scientific foundation for their notation. In collaboration scenarios with stakeholders from several disciplines, tailored conceptual models complicate communication processes, as a common understanding is not shared or implemented in specific models. To support direct communication between experts from several disciplines, a visual language is developed which allows a common visualization of discipline-specific conceptual models. For visual discrimination and to overcome visual complexity issues, conceptual models are arranged in a three-dimensional space. The visual language introduced here follows and extends established principles of Visual Language science.
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork
Resumo:
In the modern connected world, pervasive computing has become reality. Thanks to the ubiquity of mobile computing devices and emerging cloud-based services, the users permanently stay connected to their data. This introduces a slew of new security challenges, including the problem of multi-device key management and single-sign-on architectures. One solution to this problem is the utilization of secure side-channels for authentication, including the visual channel as vicinity proof. However, existing approaches often assume confidentiality of the visual channel, or provide only insufficient means of mitigating a man-in-the-middle attack. In this work, we introduce QR-Auth, a two-step, 2D barcode based authentication scheme for mobile devices which aims specifically at key management and key sharing across devices in a pervasive environment. It requires minimal user interaction and therefore provides better usability than most existing schemes, without compromising its security. We show how our approach fits in existing authorization delegation and one-time-password generation schemes, and that it is resilient to man-in-the-middle attacks.
Resumo:
Background It has been proposed that the feral horse foot is a benchmark model for foot health in horses. However, the foot health of feral horses has not been formally investigated. Objectives To investigate the foot health of Australian feral horses and determine if foot health is affected by environmental factors, such as substrate properties and distance travelled. Methods Twenty adult feral horses from five populations (n = 100) were investigated. Populations were selected on the basis of substrate hardness and the amount of travel typical for the population. Feet were radiographed and photographed, and digital images were surveyed by two experienced assessors blinded to each other's assessment and to the population origin. Lamellar samples from 15 feet from three populations were investigated histologically for evidence of laminitis. Results There was a total of 377 gross foot abnormalities identified in 100 left forefeet. There were no abnormalities detected in three of the feet surveyed. Each population had a comparable prevalence of foot abnormalities, although the type and severity of abnormality varied among populations. Of the three populations surveyed by histopathology, the prevalence of chronic laminitis ranged between 40% and 93%. Conclusions Foot health appeared to be affected by the environment inhabited by the horses. The observed chronic laminitis may be attributable to either nutritional or traumatic causes. Given the overwhelming evidence of suboptimal foot health, it may not be appropriate for the feral horse foot to be the benchmark model for equine foot health.