431 resultados para Control-flow
Resumo:
We identified policies that may be effective in reducing smoking among socioeconomically disadvantaged groups, and examined trends in their level of application between 1985 and 2000 in six western-European countries (Sweden, Finland, the United Kingdom, the Netherlands, Germany, and Spain). We located studies from literature searches in major databases, and acquired policy data from international data banks and questionnaires distributed to tobacco policy organisations/researchers. Advertising bans, smoking bans in workplaces, removing barriers to smoking cessation therapies, and increasing the cost of cigarettes have the potential to reduce socioeconomic inequalities in smoking. Between 1985 and 2000, tobacco control policies in most countries have become more targeted to decrease the smoking behaviour of low-socioeconomic groups. Despite this, many national tobacco-control strategies in western-European countries still fall short of a comprehensive policy approach to addressing smoking inequalities.
Resumo:
This paper traces the history of store (retailer-controlled) and national (manufacture controlled)brands; identifies the key historical characteristics of the past 200 years of marketing history;describes the four main time periods of U.S. retail marketing (1800 - 2000); and comments on the most likely developments within the current phases of brand marketing. Will the future focus on technology and new forms of communications? The Internet exemplifies an unconventional retailing environment, with etailer numbers growing rapidly. The central proposition of this paper is that a "cycle of control" - a pattern of marketing developments within the history of retailing and national marketing communications - Can indicate the success of marketing strategies in the future.
Resumo:
The lack of satisfactory consensus for characterizing the system intelligence and structured analytical decision models has inhibited the developers and practitioners to understand and configure optimum intelligent building systems in a fully informed manner. So far, little research has been conducted in this aspect. This research is designed to identify the key intelligent indicators, and develop analytical models for computing the system intelligence score of smart building system in the intelligent building. The integrated building management system (IBMS) was used as an illustrative example to present a framework. The models presented in this study applied the system intelligence theory, and the conceptual analytical framework. A total of 16 key intelligent indicators were first identified from a general survey. Then, two multi-criteria decision making (MCDM) approaches, the analytic hierarchy process (AHP) and analytic network process (ANP), were employed to develop the system intelligence analytical models. Top intelligence indicators of IBMS include: self-diagnostic of operation deviations; adaptive limiting control algorithm; and, year-round time schedule performance. The developed conceptual framework was then transformed to the practical model. The effectiveness of the practical model was evaluated by means of expert validation. The main contribution of this research is to promote understanding of the intelligent indicators, and to set the foundation for a systemic framework that provide developers and building stakeholders a consolidated inclusive tool for the system intelligence evaluation of the proposed components design configurations.
Resumo:
This paper proposes a new approach for delay-dependent robust H-infinity stability analysis and control synthesis of uncertain systems with time-varying delay. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional, the construction of an augmented matrix with uncorrelated terms, and the employment of a tighter bounding technique. As a result, significant performance improvement is achieved in system analysis and synthesis without using either free weighting matrices or model transformation. Examples are given to demonstrate the effectiveness of the proposed approach.
Resumo:
This paper examines the vibration characteristics and vibration control of complex ship structures. It is shown that input mobilities of a ship structure at engine supports, due to out-of-plane force or bending moment excitations, are governed by the flexural stiffness of the engine supports. The frequency averaged input mobilities of the ship structure, due to such excitations, can be represented by those of the corresponding infinite beam. The torsional moment input mobility at the engine support can be estimated from the torsional response of the engine bed section under direct excitation. It is found that the inclusion of ship hull and deck plates in the ship structure model has little effect on the frequency-averaged response of the ship structure. This study also shows that vibration propagation in complex ship structures at low frequencies can be attenuated by imposing irregularities to the ring frame locations in ships. Vibration responses of ship structures due to machinery excitations at higher frequencies can be controlled by structural modifications of the local supporting structures such as engine beds in ships.
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
How various additives can increase some cardio-vascular diseases and effects of transport for albumin and glucose through permeable membranes are some important studies in biomechanics. The rolling phenomena of the leucocytes gives rise to an inflammatory reaction along a vascular wall. Initiated by Eringen [5], a micropolar fluid is a satisfactory model for flows of fluids which contain micro-constituents which can undergo rotation.