196 resultados para Biometric authentication
Resumo:
Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.
Resumo:
Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.
Resumo:
An increasing number of countries are faced with an aging population increasingly needing healthcare services. For any e-health information system, the need for increased trust by such clients with potentially little knowledge of any security scheme involved is paramount. In addition notable scalability of any system has become a critical aspect of system design, development and ongoing management. Meanwhile cryptographic systems provide the security provisions needed for confidentiality, authentication, integrity and non-repudiation. Cryptographic key management, however, must be secure, yet efficient and effective in developing an attitude of trust in system users. Digital certificate-based Public Key Infrastructure has long been the technology of choice or availability for information security/assurance; however, there appears to be a notable lack of successful implementations and deployments globally. Moreover, recent issues with associated Certificate Authority security have damaged trust in these schemes. This paper proposes the adoption of a centralised public key registry structure, a non-certificate based scheme, for large scale e-health information systems. The proposed structure removes complex certificate management, revocation and a complex certificate validation structure while maintaining overall system security. Moreover, the registry concept may be easier for both healthcare professionals and patients to understand and trust.
Resumo:
In this chapter, we discuss four related areas of cryptology, namely, authentication, hashing, message authentication codes (MACs), and digital signatures. These topics represent active and growing research topics in cryptology. Space limitations allow us to concentrate only on the essential aspects of each topic. The bibliography is intended to supplement our survey. We have selected those items which providean overview of the current state of knowledge in the above areas. Authentication deals with the problem of providing assurance to a receiver that a communicated message originates from a particular transmitter, and that the received message has the same content as the transmitted message. A typical authentication scenario occurs in computer networks, where the identity of two communicating entities is established by means of authentication. Hashing is concerned with the problem of providing a relatively short digest–fingerprint of a much longer message or electronic document. A hashing function must satisfy (at least) the critical requirement that the fingerprints of two distinct messages are distinct. Hashing functions have numerous applications in cryptology. They are often used as primitives to construct other cryptographic functions. MACs are symmetric key primitives that provide message integrity against active spoofing by appending a cryptographic checksum to a message that is verifiable only by the intended recipient of the message. Message authentication is one of the most important ways of ensuring the integrity of information that is transferred by electronic means. Digital signatures provide electronic equivalents of handwritten signatures. They preserve the essential features of handwritten signatures and can be used to sign electronic documents. Digital signatures can potentially be used in legal contexts.
Resumo:
The increasing growth in the use of Hardware Security Modules (HSMs) towards identification and authentication of a security endpoint have raised numerous privacy and security concerns. HSMs have the ability to tie a system or an object, along with its users to the physical world. However, this enables tracking of the user and/or an object associated with the HSM. Current systems do not adequately address the privacy needs and as such are susceptible to various attacks. In this work, we analyse various security and privacy concerns that arise when deploying such hardware security modules and propose a system that allow users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Along with the standard notion of protecting privacy of an user, the proposed system offers colligation between seemingly independent pseudonyms. This new property when combined with HSMs that store the master secret key is extremely beneficial to a user, as it offers a convenient way to generate a large number of pseudonyms using relatively small storage requirements.
Resumo:
Recently a convex hull based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. In this paper we show two efficient probabilistic attacks on this protocol which reveal the user’s secret after the observation of only a handful of authentication sessions. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values which cross the threshold of usability.
Resumo:
Phishing, a form of on-line identity theft, is a major problem worldwide, accounting for more than $7.5 Billion in losses in the US alone between 2005 and 2008. Australia was the first country to be targeted by Internet bank phishing in 2003 and continues to have a significant problem in this area. The major cyber crime groups responsible for phishing are based in Eastern Europe. They operate with a large degree of freedom due to the inherent difficulties in cross border law enforcement and the current situation in Eastern Europe, particularly in Russia and the Ukraine. They employ highly sophisticated and efficient technical tools to compromise victims and subvert bank authentication systems. However because it is difficult for them to repatriate the fraudulently obtained funds directly they employ Internet money mules in Australia to transfer the money via Western Union or Money gram. It is proposed a strategy, which firstly places more focus by Australian law enforcement upon transactions via Western Union and Money gram to detect this money laundering, would significantly impact the success of the Phishing attack model. This combined with a technical monitoring of Trojan technology and education of potential Internet money mules to avoid being duped would provide a winning strategy for the war on phishing for Australia.
Resumo:
We propose a new protocol providing cryptographically secure authentication to unaided humans against passive adversaries. We also propose a new generic passive attack on human identification protocols. The attack is an application of Coppersmith’s baby-step giant-step algorithm on human identification protcols. Under this attack, the achievable security of some of the best candidates for human identification protocols in the literature is further reduced. We show that our protocol preserves similar usability while achieves better security than these protocols. A comprehensive security analysis is provided which suggests parameters guaranteeing desired levels of security.
Resumo:
Security protocols are designed in order to provide security properties (goals). They achieve their goals using cryptographic primitives such as key agreement or hash functions. Security analysis tools are used in order to verify whether a security protocol achieves its goals or not. The analysed property by specific purpose tools are predefined properties such as secrecy (confidentiality), authentication or non-repudiation. There are security goals that are defined by the user in systems with security requirements. Analysis of these properties is possible with general purpose analysis tools such as coloured petri nets (CPN). This research analyses two security properties that are defined in a protocol that is based on trusted platform module (TPM). The analysed protocol is proposed by Delaune to use TPM capabilities and secrets in order to open only one secret from two submitted secrets to a recipient
Resumo:
Multiplayer Dynamic Difficulty Adjustment (mDDA) is a method of reducing the difference in player performance and subsequent challenge in competitive multiplayer video games. As a balance of between player skill and challenge experienced is necessary for optimal player experience, this experimental study investigates the effects of mDDA and awareness of its presence on player performance and experience using subjective and biometric measures. Early analysis indicates that mDDA normalizes performance and challenge as expected, but awareness of its presence can reduce its effectiveness.
Resumo:
Introduction Natural product provenance is important in the food, beverage and pharmaceutical industries, for consumer confidence and with health implications. Raman spectroscopy has powerful molecular fingerprint abilities. Surface Enhanced Raman Spectroscopy’s (SERS) sharp peaks allow distinction between minimally different molecules, so it should be suitable for this purpose. Methods Naturally caffeinated beverages with Guarana extract, coffee and Red Bull energy drink as a synthetic caffeinated beverage for comparison (20 µL ea.) were reacted 1:1 with Gold nanoparticles functionalised with anti-caffeine antibody (ab15221) (10 minutes), air dried and analysed in a micro-Raman instrument. The spectral data was processed using Principle Component Analysis (PCA). Results The PCA showed Guarana sourced caffeine varied significantly from synthetic caffeine (Red Bull) on component 1 (containing 76.4% of the variance in the data). See figure 1. The coffee containing beverages, and in particular Robert Timms (instant coffee) were very similar on component 1, but the barista espresso showed minor variance on component 1. Both coffee sourced caffeine samples varied with red Bull on component 2, (20% of variance). ************************************************************ Figure 1 PCA comparing a naturally caffeinated beverage containing Guarana with coffee. ************************************************************ Discussion PCA is an unsupervised multivariate statistical method that determines patterns within data. Figure 1 shows Caffeine in Guarana is notably different to synthetic caffeine. Other researchers have revealed that caffeine in Guarana plants is complexed with tannins. Naturally sourced/ lightly processed caffeine (Monster Energy, Espresso) are more inherently different than synthetic (Red Bull) /highly processed (Robert Timms) caffeine, in figure 1, which is consistent with this finding and demonstrates this technique’s applicability. Guarana provenance is important because it is still largely hand produced and its demand is escalating with recognition of its benefits. This could be a powerful technique for Guarana provenance, and may extend to other industries where provenance / authentication are required, e.g. the wine or natural pharmaceuticals industries.
Resumo:
This article develops methods for spatially predicting daily change of dissolved oxygen (Dochange) at both sampled locations (134 freshwater sites in 2002 and 2003) and other locations of interest throughout a river network in South East Queensland, Australia. In order to deal with the relative sparseness of the monitoring locations in comparison to the number of locations where one might want to make predictions, we make a classification of the river and stream locations. We then implement optimal spatial prediction (ordinary and constrained kriging) from geostatistics. Because of their directed-tree structure, rivers and streams offer special challenges. A complete approach to spatial prediction on a river network is given, with special attention paid to environmental exceedances. The methodology is used to produce a map of Dochange predictions for 2003. Dochange is one of the variables measured as part of the Ecosystem Health Monitoring Program conducted within the Moreton Bay Waterways and Catchments Partnership.
Resumo:
For users of germplasm collections, the purpose of measuring characterization and evaluation descriptors, and subsequently using statistical methodology to summarize the data, is not only to interpret the relationships between the descriptors, but also to characterize the differences and similarities between accessions in relation to their phenotypic variability for each of the measured descriptors. The set of descriptors for the accessions of most germplasm collections consists of both numerical and categorical descriptors. This poses problems for a combined analysis of all descriptors because few statistical techniques deal with mixtures of measurement types. In this article, nonlinear principal component analysis was used to analyze the descriptors of the accessions in the Australian groundnut collection. It was demonstrated that the nonlinear variant of ordinary principal component analysis is an appropriate analytical tool because subspecies and botanical varieties could be identified on the basis of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions could be easily spotted and their characteristics established. The statistical results and their interpretations provide users with a more efficient way to identify accessions of potential relevance for their plant improvement programs and encourage and improve the usefulness and utilization of germplasm collections.
Resumo:
We first classify the state-of-the-art stream authentication problem in the multicast environment and group them into Signing and MAC approaches. A new approach for authenticating digital streams using Threshold Techniques is introduced. The new approach main advantages are in tolerating packet loss, up to a threshold number, and having a minimum space overhead. It is most suitable for multicast applications running over lossy, unreliable communication channels while, in same time, are pertain the security requirements. We use linear equations based on Lagrange polynomial interpolation and Combinatorial Design methods.
Resumo:
To provide card holder authentication while they are conducting an electronic transaction using mobile devices, VISA and MasterCard independently proposed two electronic payment protocols: Visa 3D Secure and MasterCard Secure Code. The protocols use pre-registered passwords to provide card holder authentication and Secure Socket Layer/ Transport Layer Security (SSL/TLS) for data confidentiality over wired networks and Wireless Transport Layer Security (WTLS) between a wireless device and a Wireless Application Protocol (WAP) gateway. The paper presents our analysis of security properties in the proposed protocols using formal method tools: Casper and FDR2. We also highlight issues concerning payment security in the proposed protocols.