617 resultados para Axis 1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ways in which a society set standards of behaviour and of conduct for its members vary hugely. For example, accepted practices, recognised customs, spiritually or morally inspired norms, judicially declared rules, executively formulated edicts, formal legislative enactments or constitutionally embedded rights and duties. Whatever form they assume, these standards are the artificial construction of the human mind. Accordingly the law - whatever its form - can do no more and no less than regulate or set standards for human behaviour, human conduct, and human decision-making. The law cannot regulate the environment. It can only regulate human activities that impact directly or indirectly upon the environment. This applies as much to wetlands as components of the environment as it does to any other components of the environment or the environment at large. The capacity of the law to protect the environment and therefore wetlands is thus totally dependent upon the capacity of the law to regulate human behaviour, human conduct and human decision-making. At the same time the law needs to reflect the specific nature, functions and locations of wetlands. A wetland is an ecosystem by itself; it comprises a range of ecosystems within it; and it is part of a wider set of ecosystems. Hence, the significant ecological functions performed by wetlands. Then there are the benefits flowing to humans from wetlands. These may be social, economic, cultural, aesthetic, or a combination of some or of all of these. It is a challenge for a society acting through its legal system to find the appropriate balance between these ecological and these human values. But that is what sustainability requires.The ways in which a society set standards of behaviour and of conduct for its members vary hugely. For example, accepted practices, recognised customs, spiritually or morally inspired norms, judicially declared rules, executively formulated edicts, formal legislative enactments or constitutionally embedded rights and duties. Whatever form they assume, these standards are the artificial construction of the human mind. Accordingly the law - whatever its form - can do no more and no less than regulate or set standards for human behaviour, human conduct, and human decision-making. The law cannot regulate the environment. It can only regulate human activities that impact directly or indirectly upon the environment. This applies as much to wetlands as components of the environment as it does to any other components of the environment or the environment at large. The capacity of the law to protect the environment and therefore wetlands is thus totally dependent upon the capacity of the law to regulate human behaviour, human conduct and human decision-making. At the same time the law needs to reflect the specific nature, functions and locations of wetlands. A wetland is an ecosystem by itself; it comprises a range of ecosystems within it; and it is part of a wider set of ecosystems. Hence, the significant ecological functions performed by wetlands. Then there are the benefits flowing to humans from wetlands. These may be social, economic, cultural, aesthetic, or a combination of some or of all of these. It is a challenge for a society acting through its legal system to find the appropriate balance between these ecological and these human values. But that is what sustainability requires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halogen bonding has been observed for the first time between an isoindoline nitroxide and an iodoperfluorocarbon (see figure), which cocrystallize to form a discrete 2:1 supramolecular compound in which NO.⋅⋅⋅I halogen bonding is the dominant intermolecular interaction. This illustrates the potential use of halogen bonding and isoindoline nitroxide tectons for the assembly of organic spin systems...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the title compound, C5H7N2+ C8H11O4-, the cis-anions associate through head-to-tail carboxylic acid carboxyl O-H...O hydrogen-bonds [graph set C(7)], forming chains which extend along c and are inter-linked through the carboxyl groups forming cyclic R2/2(8) associations with the pyridinium and an amine H donor of the cation. Further amine...carboxyl N-H...O interactions form enlarged centrosymmetric rings [graph set R4/4(18)] and extensions down b to give a three-dimensional structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Columns are one of the key load bearing elements that are highly susceptible to vehicle impacts. The resulting severe damages to columns may leads to failures of the supporting structure that are catastrophic in nature. However, the columns in existing structures are seldom designed for impact due to inadequacies of design guidelines. The impact behaviour of columns designed for gravity loads and actions other than impact is, therefore, of an interest. A comprehensive investigation is conducted on reinforced concrete column with a particular focus on investigating the vulnerability of the exposed columns and to implement mitigation techniques under low to medium velocity car and truck impacts. The investigation is based on non-linear explicit computer simulations of impacted columns followed by a comprehensive validation process. The impact is simulated using force pulses generated from full scale vehicle impact tests. A material model capable of simulating triaxial loading conditions is used in the analyses. Circular columns adequate in capacity for five to twenty story buildings, designed according to Australian standards are considered in the investigation. The crucial parameters associated with the routine column designs and the different load combinations applied at the serviceability stage on the typical columns are considered in detail. Axially loaded columns are examined at the initial stage and the investigation is extended to analyse the impact behaviour under single axis bending and biaxial bending. The impact capacity reduction under varying axial loads is also investigated. Effects of the various load combinations are quantified and residual capacity of the impacted columns based on the status of the damage and mitigation techniques are also presented. In addition, the contribution of the individual parameter to the failure load is scrutinized and analytical equations are developed to identify the critical impulses in terms of the geometrical and material properties of the impacted column. In particular, an innovative technique was developed and introduced to improve the accuracy of the equations where the other techniques are failed due to the shape of the error distribution. Above all, the equations can be used to quantify the critical impulse for three consecutive points (load combinations) located on the interaction diagram for one particular column. Consequently, linear interpolation can be used to quantify the critical impulse for the loading points that are located in-between on the interaction diagram. Having provided a known force and impulse pair for an average impact duration, this method can be extended to assess the vulnerability of columns for a general vehicle population based on an analytical method that can be used to quantify the critical peak forces under different impact durations. Therefore the contribution of this research is not only limited to produce simplified yet rational design guidelines and equations, but also provides a comprehensive solution to quantify the impact capacity while delivering new insight to the scientific community for dealing with impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the structure of the 1:1 proton-transfer compound of brucine with 2-(2,4,6-trinitroanilino)benzoic acid C23H27N2O4+ . C13H7N4O8- . H~2~O, the brucinium cations form the classic undulating ribbon substructures through overlapping head-to-tail interactions while the anions and the three related partial water molecules of solvation (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N-H...O(carboxyl) hydrogen bonds and indirectly by the three water molecules which form similar conjoint cyclic bridging units [graph set R2/4(8)] through O-H...O(carbonyl) and O(carboxyl) hydrogen bonds, giving a two-dimensional layered structure. Within the anion, intramolecular N-H...O(carboxyl) and N H...O(nitro) hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity inter-ring dihedral angle 32.50(14)\%]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures and also represents the first reported structure of any form of the guest compound 2-(2,4,6-trinitroanilino)benzoic acid.