230 resultados para virtual currency
Resumo:
The increasingly widespread use of large-scale 3D virtual environments has translated into an increasing effort required from designers, developers and testers. While considerable research has been conducted into assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. In the work presented in this paper, two novel neural network-based approaches are presented to predict the correct visualization of 3D content. Multilayer perceptrons and self-organizing maps are trained to learn the normal geometric and color appearance of objects from validated frames and then used to detect novel or anomalous renderings in new images. Our approach is general, for the appearance of the object is learned rather than explicitly represented. Experiments were conducted on a game engine to determine the applicability and effectiveness of our algorithms. The results show that the neural network technology can be effectively used to address the problem of automatic and reliable visual testing of 3D virtual environments.
Resumo:
Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Virtual worlds (VWs) continue to be used extensively in Australia and New Zealand higher education institutions although the tendency towards making unrealistic claims of efficacy and popularity appears to be over. Some educators at higher education institutions continue to use VWs in the same way as they have done in the past; others are exploring a range of different VWs or using them in new ways; whilst some are opting out altogether. This paper presents an overview of how 46 educators from some 26 institutions see VWs as an opportunity to sustain higher education. The positives and negatives of using VWs are discussed.
The use of virtual prototyping to rehearse the sequence of construction work involving mobile cranes
Resumo:
Purpose – Rehearsing practical site operations is without doubt one of the most effective methods for minimising planning mistakes, because of the learning that takes place during the rehearsal activity. However, real rehearsal is not a practical solution for on-site construction activities, as it not only involves a considerable amount of cost but can also have adverse environmental implications. One approach to overcoming this is by the use of virtual rehearsals. The purpose of this paper is to investigate an approach to simulation of the motion of cranes in order to test the feasibility of associated construction sequencing and generate construction schedules for review and visualisation. Design/methodology/approach – The paper describes a system involving two technologies, virtual prototyping (VP) and four-dimensional (4D) simulation, to assist construction planners in testing the sequence of construction activities when mobile cranes are involved. The system consists of five modules, comprising input, database, equipment, process and output, and is capable of detecting potential collisions. A real-world trial is described in which the system was tested and validated. Findings – Feedback from the planners involved in the trial indicated that they found the system to be useful in its present form and that they would welcome its further development into a fully automated platform for validating construction sequencing decisions. Research limitations/implications – The tool has the potential to provide a cost-effective means of improving construction planning. However, it is limited at present to the specific case of crane movement under special consideration. Originality/value – This paper presents a large-scale, real life case of applying VP technology in planning construction processes and activities.
Resumo:
Tower crane dismantling is one of the most dangerous activities in the construction industry. Tower crane erection and dismantlement causes 10–12% of the fatalities of all crane accidents. The nature of the task is such that off-the-job training is not practicable, and the knowledge and expertise needed has to be gained on the job. However, virtual trainers such as Microsoft Flight Simulator for airplane pilots and mission rehearsal exercise (MRE) for army personnel have been developed and are known to provide a highly successful means of overcoming the risks involved in such on-the-job learning and clearly have potential in construction situations. This paper describes the newly developed multiuser virtual safety training system (MVSTS) aimed at providing a similar learning environment for those involved in tower crane dismantlement. The proposed training system is developed by modifying an existing game engine. Within the close-to-reality virtual environment, trainees can participate in a virtual dismantling process. During the process, they learn the correct dismantling procedure and working location and to cooperate with other trainees by virtually dismantling the crane. The system allows the trainees to experience the complete procedure in a risk-free environment. A case study is provided to demonstrate how the system works and its practical application. The proposed system was evaluated by interviews with 30 construction experts with different backgrounds, divided into three groups according to their experience and trained by the traditional and virtual methods, respectively. The results indicate that the trainees of the proposed system generally learned better than those using the traditional method. The ratings also indicate that the system generally has great potential as a training platform.
Resumo:
Identifying, modelling and documenting business processes usually require the collaboration of many stakeholders that may be spread across companies in inter-organizational settings. While modern process modelling technologies are beginning to provide a number of features to support remote, they lack support for visual cues used in co-located collaboration. In this paper, we examine the importance of visual cues for collaboration tasks in collaborative process modelling. Based on this analysis, we present a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. We then report on a preliminary analysis of the technology. In conclusion, we proceed to describe the future direction of our research with regards to the theoretical contributions expected from the evaluation of the tool.
Resumo:
This article discusses the adequacy of copyright protection afforded to multimedia products pursuant to the Copyright Act 1968 (Cth) and in response to international obligations. The paper critically evaluates the effect that the most recent amendments to the Copyright Act have had on the protection of copyright in multimedia products. An outline of some practical measures of protection available to copyright owners as alternatives or complements to the current statutory regime is provided, ultimately concluding that the current legislative protection is ineffective. The paper closes by considering possible future reform by way of statutory amendments to the Copyright Act aimed at increasing protection of copyright in multimedia products.
Resumo:
Psychosis is a mental disorder that affects 1-2% of the population at some point in their lives. One of the main causes of psychosis is the mental illness schizophrenia. Sufferers of this illness often have terrifying symptoms such as hallucinations, delusions, and thought disorder. This project aims to develop a virtual environment to simulate the experience of psychosis, focusing on re-creating auditory and visual hallucinations. A model of a psychiatric ward was created and the psychosis simulation software was written to re-create the auditory and visual hallucinations of one particular patient. The patient was very impressed with the simulation, and commented that it effectively re-created the same emotions that she experienced on a day-to-day basis during her psychotic episodes. It is hoped that this work will result in a useful educational tool about schizophrenia, leading to improved training of clinicians, and fostering improved understanding and empathy toward sufferers of schizophrenia in the community, ultimately improving the quality of life and chances of recovery of patients.
Resumo:
Virtual Reality (VR) techniques are increasingly being used for education about and in the treatment of certain types of mental illness. Research indicates that VR is delivering on its promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1-2% of the population, and it is estimated 12-16% of hospital beds in Australia are occupied by patients with psychosis. Tragically, there is also an increased risk of suicide associated with this diagnosis. A significant research project being undertaken across the University of Queensland faculties of Health Sciences and EPSA (Engineering, Physical Sciences and Architecture) has constructed a number of virtual environments that reproduce the phenomena experienced by patients who have psychosis. Symptoms of psychosis include delusions, hallucinations and thought disorder. The VR environment will allow behavioral, exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the current work of the project, previous stages of software development and the final goal to introduce VR to medical consulting rooms.
Resumo:
Virtual Reality (VR) techniques are increasingly being used in education about and in the treatment of certain types of mental illness. Research indicates VR is delivering on it's promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1−2% of the population. A significant research project being undertaken at the University of Queensland has constructed virtual environments that reproduce the phenomena experienced by patients who have psychosis. The VR environment will allow behavioral exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the work of the project, previous stages of software development and current and future educational and clinical applications of the Virtual Environments.
Resumo:
This proposal combines ethnographic techniques and discourse studies to investigating a collective of people engaged with audiovisual productions who collaborate in Curta Favela’s workshops in Rio de Janeiro’s favelas. ‘Favela’ is often translated simply as ‘slum’ or ‘shantytown’, but these terms connote negative characteristics such as shortage, poverty, and deprivation referring to favelas which end up stigmatizing these low income suburbs. Curta Favela (Favela Shorts) is an independent project which all participants join to use photography and participatory audiovisual production as a tool for social change and raising consciousness. As cameras are not affordable for favelas dwellers, Curta Favela’s volunteers teach favela residents how they can use their mobile phones and compact cameras to take pictures and make movies, and afterwards, how they can edit the data using free editing video software programs and publish it on the Internet. To record audio, they use their mp3 or mobile phones. The main aim of this study is to shed light not only on how this project operates, but also to highlight how collective intelligence can be used as a way of fighting against the lack of basic resources.
Resumo:
This paper explores the design of virtual and physical learning spaces developed for students of drama and theatre studies. What can we learn from the traditional drama workshop that will inform the design of drama and theatre spaces created in technology-mediated learning environments? The authors examine four examples of spaces created for online, distance and on-campus students and discuss the relationship between the choice of technology, the learning and teaching methods, and the outcomes for student engagement. Combining insights from two previous action research projects, the discussion focuses on the physical space used for contemporary drama workshops, supplemented by Web 2.0 technologies; a modular online theatre studies course; the blogging space of students creating a group devised play; and the open and immersive world of Second Life, where students explore 3D simulations of historical theatre sites. The authors argue that the drama workshop can be used as inspiration for the design of successful online classrooms. This is achieved by focusing on students’ contributions to the learning as individuals and group members, the aesthetics and mise-en-scene of the learning space, and the role of mobile and networked technologies. Students in this environment increase their capacity to become co-creators of knowledge and to achieve creative outcomes. The drama workshop space in its physical and virtual forms is seen as a model for classrooms in other disciplines, where dynamic, creative and collaborative spaces are required.
Resumo:
Traditional approaches to teaching criminal law in Australian law schools include lectures that focus on the transmission of abstracted and decontextualised knowledge, with content often prioritised at the expense of depth. This paper discusses The Sapphire Vortex, a blended learning environment that combines a suite of on-line modules using Second Life machinima to depict a narrative involving a series of criminal offences and the ensuing courtroom proceedings, expert commentary by practising lawyers and class discussions.
Resumo:
This paper presents a novel power control strategy that decouples the active and reactive power for a synchronous generator connected to a power network. The proposed control paradigm considers the capacitance of the transmission line along with its resistance and reactance as-well. Moreover the proposed controller takes into account all cases of R-X relationships, thus allowing it to function in Virtual Power Plant (VPP) structures which operate at both medium voltage (MV) and low voltage (LV) levels. The independent control of active and reactive power is achieved through rotational transformations of the terminal voltages and currents at the synchronous generator's output. This paper details the control technique by first presenting the mathematical and electrical network analysis of the methodology and then successfully implementing the control using MATLAB-SIMULINK simulation.