174 resultados para transparent ceramics
Resumo:
Quantities of Y2BaCuO5 powder greater than 500g have been manufactured by a co-precipitation process. By suitable heat treatments, the particle size of these powders can be varied from 5µm to less than 500nm. Sub-micrometer size powders may, under some conditions, have a duller green colour which is attributed to <2% unreacted material. However, after re-grinding and re-firing of this powder, high-purity powders can be achieved without significant grain growth. Inductively coupled plasma (ICP) spectroscopy is used to measure the stoichiometry of the powders and X-ray diffraction is used to determine phase purity. In both cases, the bulk composition is consistent with Y2BaCuO5 and phase purity is considered better than 95%.
Resumo:
A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994.
Resumo:
Wires of YBa2Cu3O7-x were fabricated by extrusion using a hydroxypropyl methylcellulose (HPMC) binder. As little as 2 wt.% binder was added to an oxide prepared by a novel co-precipitation process, to produce a plastic mass which readily gave continuous extrusion of long lengths of wire in a reproducible fashion. Critical temperatures of 92K were obtained for wires given optimum high-temperature heat treatments. Critical current densities greater than 1000 A cm-1 were measured at 77.3K using heat treatments at around 910°C for 10h. These transport critical current densities, measured on centimeter-long wires, were obtained with microstructures showing a relatively dense and uniform distribution of randomly oriented, small YBa2Cu3O7-x grains. © 1993.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.
Resumo:
Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD)1 show that two basic types of whiskers are produced at low temperatures (between 1200°C and 1400°C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanism.
Resumo:
High resolution TEM images of boron carbide (B13C2) have been recorded and compared with images calculated using the multislice method as implemented by M. A. O'Keefe in the SHRLI programs. Images calculated for the [010] zone, using machine parameters for the JEOL 2000FX AEM operating at 200 keV, indicate that for the structure model of Will et al., the optimum defocus image can be interpreted such that white spots correspond to B12 icosahedra for thin specimens and to low density channels through the structure adjacent to the direct inter-icosahedral bonds for specimens of intermediate thickness (-40 > t > -100 nm). With this information, and from the symmetry observed in the TEM images, it is likely that the (101) twin plane passes through the center of icosahedron located at the origin. This model was tested using the method of periodic continuation. Resulting images compare favorably with experimental images, thus supporting the structural model. The introduction of a (101) twin plane through the origin creates distortions to the icosahedral linkages as well as to the intra-icosahedral bonding. This increases the inequivalence of adjacent icosahedral sites along the twin plane, and thereby increases the likelihood of bipolaron hopping.
Resumo:
Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder.
Resumo:
Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot pressed B13C2 sample shows a high density of variable width twins normal to (10-11). Subtle shifts or offsets of lattice fringes along the twin plane and normal to (10 5) were also observed. A B4C powder showed little evidence of stacking disorder in crystalline regions.
Resumo:
The Analytical Electron Microscope (AEM), with which secondary X-ray emission from a thin (<150nm), electron-transparent material is measured, has rapidly become a versatile instrument for qualitative and quantitative elemental analyses of many materials, including minerals. With due regard for sources of error in experimental procedures, it is possible to obtain high spatial resolution (~20nm diameter) and precise elemental analyses (~3% to 5% relative) from many silicate minerals. In addition, by utilizing the orientational dependence of X-ray emission for certain multi-substituted crystal structures, site occupancies for individual elements within a unit cell can be determined though with lower spatial resolution. The relative ease with which many of these compositional data may be obtained depends in part on the nature of the sample, but, in general, is comparable to other solid state analytical techniques such as X-ray diffraction and electron microprobe analysis. However, the improvement in spatial resolution obtained with the AEM (up to two orders of magnitude in analysis diameter) significantly enhances interpretation of fine-grained assemblages in many terrestrial or extraterrestrial rocks.
Resumo:
The microstructures of hot-pressed B4C were monitored during in situ heating experiments from room temperature to 1000C by analytical electron microscopy (AEM). Variations in the microstructure of B4C were not observed. However, during heating, secondary phases formed in voids and on the surfaces of the specimen.
Resumo:
Given the increasing investments being made in brand development by destination marketing organisations (DMO) since the 1990s, including rebranding and repositioning, more research is needed to enhance understanding of how to effectively monitor destination brand performance over time. This paper reports the results of a study of brand performance of a competitive set of destinations, in their most important market, between 2003 and 2012. Brand performance was measured from the perspective of consumer perceptions, based on the concept of consumer-based brand equity (CBBE). A structured questionnaire was administered to different samples in 2003, 2007 and 2012. The results indicated minimal changes in perceptions of the five destinations over the 10 year period. Due to the commonality of challenges faced by DMOs worldwide, it is suggested the CBBE hierarchy provides destination marketers with a practical tool for evaluating brand performance over time; in terms of measures of effectiveness of past marketing communications, as well as indicators of future performance. In addition, and importantly, CBBE also provides transparent accountability measures for stakeholders. While the topic of destination image has been one of the most popular in the tourism literature, there has been a paucity of research published in relation to the temporal aspect of consumer perceptions. This is a rare investigation into the measurement of perceptions of destinations over a 10 year period.
Resumo:
There are different ways to authenticate humans, which is an essential prerequisite for access control. The authentication process can be subdivided into three categories that rely on something someone i) knows (e.g. password), and/or ii) has (e.g. smart card), and/or iii) is (biometric features). Besides classical attacks on password solutions and the risk that identity-related objects can be stolen, traditional biometric solutions have their own disadvantages such as the requirement of expensive devices, risk of stolen bio-templates etc. Moreover, existing approaches provide the authentication process usually performed only once initially. Non-intrusive and continuous monitoring of user activities emerges as promising solution in hardening authentication process: iii-2) how so. behaves. In recent years various keystroke dynamic behavior-based approaches were published that are able to authenticate humans based on their typing behavior. The majority focuses on so-called static text approaches, where users are requested to type a previously defined text. Relatively few techniques are based on free text approaches that allow a transparent monitoring of user activities and provide continuous verification. Unfortunately only few solutions are deployable in application environments under realistic conditions. Unsolved problems are for instance scalability problems, high response times and error rates. The aim of this work is the development of behavioral-based verification solutions. Our main requirement is to deploy these solutions under realistic conditions within existing environments in order to enable a transparent and free text based continuous verification of active users with low error rates and response times.
Resumo:
We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method.