157 resultados para static images
Resumo:
This thesis introduces a new way of using prior information in a spatial model and develops scalable algorithms for fitting this model to large imaging datasets. These methods are employed for image-guided radiation therapy and satellite based classification of land use and water quality. This study has utilized a pre-computation step to achieve a hundredfold improvement in the elapsed runtime for model fitting. This makes it much more feasible to apply these models to real-world problems, and enables full Bayesian inference for images with a million or more pixels.
Resumo:
Purpose To test the effectiveness of static and dynamic orthoses using them as an exclusive treatment for proximal interphalangeal (PIP) joint flexion contracture compared with other hand therapy conservative treatments described in the literature. Methods 60 patients who used orthoses were compared with a control group that received other hand therapy treatments. Clinical assessments were measured before the experiment and 3 months after and included active PIP joint extension and function. Results A significant improvement in the extension active range of motion at the PIP joint in the second measurement was found in both groups, but it was significantly greater in the experimental group. Improvement in function (Disabilities of the Arm, Shoulder, and Hand score) between the first and second assessment was similar in the control and experimental groups. Conclusions Using night progressive static and daily dynamic orthoses as an exclusive treatment during the proliferative phase led to significant improvements in the PIP joint active extension, but the improvement did not correlate with increased function as perceived by the patient.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.
Resumo:
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
Resumo:
We used diffusion tensor magnetic resonance imaging (DTI) to reveal the extent of genetic effects on brain fiber microstructure, based on tensor-derived measures, in 22 pairs of monozygotic (MZ) twins and 23 pairs of dizygotic (DZ) twins (90 scans). After Log-Euclidean denoising to remove rank-deficient tensors, DTI volumes were fluidly registered by high-dimensional mapping of co-registered MP-RAGE scans to a geometrically-centered mean neuroanatomical template. After tensor reorientation using the strain of the 3D fluid transformation, we computed two widely used scalar measures of fiber integrity: fractional anisotropy (FA), and geodesic anisotropy (GA), which measures the geodesic distance between tensors in the symmetric positive-definite tensor manifold. Spatial maps of intraclass correlations (r) between MZ and DZ twins were compared to compute maps of Falconer's heritability statistics, i.e. the proportion of population variance explainable by genetic differences among individuals. Cumulative distribution plots (CDF) of effect sizes showed that the manifold measure, GA, comparably the Euclidean measure, FA, in detecting genetic correlations. While maps were relatively noisy, the CDFs showed promise for detecting genetic influences on brain fiber integrity as the current sample expands.
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
Over the last several years, Australian media magnate Kerry Packer has sought to maximise the value of the intellectual property assets of the television station Channel Nine. He has made a concerted effort to expand the scope of copyright protection over television broadcasts screened. The television station Channel Nine has taken a number of legal actions against its rivals and competitors - including the Australian Broadcasting Corporation and Network Ten. It has alleged that the broadcasters have used substantial parts of copyrighted television broadcasts without their permission.
Resumo:
Background To date bone-anchored prostheses are used to alleviate the concerns caused by socket suspended prostheses and to improve the quality of life of transfemoral amputees (TFA). Currently, two implants are commercially available (i.e., OPRA (Integrum AB, Sweden), ILP (Orthodynamics GmbH, Germany)). [1-17]The success of the OPRA technique is codetermined by the rehabilitation program. TFA fitted with an osseointegrated implant perform progressive mechanical loading (i.e. static load bearing exercises (LBE)) to facilitate bone remodelling around the implant.[18, 19] Aim This study investigated the trustworthiness of monitoring the load prescribed (LP) during experimental static LBEs using the vertical force provided by a mechanical bathroom scale that is considered a surrogate of the actual load applied. Method Eleven unilateral TFAs fitted with an OPRA implant performed five trials in four loading conditions. The forces and moments on the three axes of the implant were measured directly with an instrumented pylon including a six-channel transducer. The “axial” and “vectorial” comparisons corresponding to the difference between the force applied on the long axis of the fixation and LP as well as the resultant of the three components of the load applied and LP, respectively were analysed Results For each loading condition, Wilcoxon One-Sample Signed Rank Tests were used to investigate if significant differences (p<0.05) could be demonstrated between the force applied on the long axis and LP, and between the resultant of the force and LP. The results demonstrated that the raw axial and vectorial differences were significantly different from zero in all conditions (p<0.05), except for the vectorial difference for the 40 kg loading condition (p=0.182). The raw axial difference was negative for all the participants in every loading condition, except for TFA03 in the 10 kg condition (11.17 N). Discussion & Conclusion This study showed a significant lack of axial compliance. The load applied on the long axis was significantly smaller than LP in every loading condition. This led to a systematic underloading of the long axis of the implant during the proposed experimental LBE. Monitoring the vertical force might be only partially reflective of the actual load applied, particularly on the long axis of the implant.
Resumo:
Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.
Resumo:
Self-organized Bi lines that are only 1.5 nm wide can be grown without kinks or breaks on Si(0 0 1) surfaces to lengths of up to 500 nm. Constant-current topographical images of the lines, obtained with the scanning tunneling microscope, have a striking bias dependence. Although the lines appear darker than the Si terraces at biases below ≈∣1.2∣ V, the contrast reverses at biases above ≈∣1.5∣ V. Between these two ranges the lines and terraces are of comparable brightness. It has been suggested that this bias dependence may be due to the presence of a semiconductor-like energy gap within the line. Using ab initio calculations it is demonstrated that the energy gap is too small to explain the experimentally observed bias dependence. Consequently, at this time, there is no compelling explanation for this phenomenon. An alternative explanation is proposed that arises naturally from calculations of the tunneling current, using the Tersoff–Hamann approximation, and an examination of the electronic structure of the line.
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.