484 resultados para spine biomechanics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is often postulated that an increased hip to shoulder differential angle (`X-Factor') during the early downswing better utilises the stretch-shorten cycle and improves golf performance. The current study aims to examine the potential relationship between the X-Factor and performance during the tee-shot. Seven golfers with handicaps between 0 and 10 strokes comprised the low-handicap group, whilst the high-handicap group consisted of eight golfers with handicaps between 11 and 20 strokes. The golfers performed 20 drives and three-dimensional kinematic data were used to quantify hip and shoulder rotation and the subsequent X-Factor. Compared with the low-handicap group, the high-handicap golfers tended to demonstrate greater hip rotation at the top of the backswing and recorded reduced maximum X-Factor values. The inconsistencies evident in the literature may suggest that a universal method of measuring rotational angles during the golf swing would be beneficial for future studies, particularly when considering potential injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different methods to measure binocular longitudinal corneal apex movements were synchronously applied. High-speed videokeratoscopy at a sampling frequency of 15 Hz and a customdesigned ultrasound distance sensor at 100 Hz were used for the left and the right eye, respectively. Four healthy subjects participated in the study. Simultaneously, cardiac electric cycle (ECG) was registered for each subject at 100 Hz. Each measurement took 20 s. Subjects were asked to suppress blinking during the measurements. A rigid headrest and a bite-bar were used to minimize undesirable head movements. Time, frequency and time-frequency representations of the acquired signals were obtained to establish their temporal and spectral contents. Coherence analysis was used to estimate the correlation between the measured signals. The results showed close correlation between both corneal apex movements and the cardiopulmonary system. Unraveling these relationships could lead to better understanding of interactions between ocular biomechanics and vision. The advantages and disadvantages of the two methods in the context of measuring longitudinal movements of the corneal apex are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Falling represents a health risk for lower limb amputees fitted with an osseointegrated fixation mainly because of the potential damage to the fixation. The purpose of this study was to characterise a real forward fall that occurred inadvertently to a transfemoral amputee fitted with an osseointegrated fixation while attending a gait measurement session to assess the load applied on the residuum. The objective was to analyse the load applied on the fixation with an emphasis on the sequence of events, the pattern and the magnitude of the forces and moments. The load was measured directly at 200 Hz using a six-channel transducer. Complementary video footage was also studied. The fall was divided into four phases: loading (240 ms), descent (620 ms), impact (365 ms) and recovery (2495 ms). The main impact forces and moments occurred 870 ms and 915 ms after the heel contact, and corresponded to 133 %BW and 17 %BWm, or 1.2 and 11.2 times the maximum forces and moments applied during the previous steps of the participant, respectively. This study provided key information to engineers and clinicians facing the challenge to design equipment, and rehabilitation and exercise programs to restore safely the locomotion of lower limb amputees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate speed regulation during overground running on undulating terrain. Methods: Following an initial laboratory session to calculate physiological thresholds, eight experienced runners completed a spontaneously paced time trial over 3 laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Results: Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. 89% of group level speed was predicted using a modified gradient factor. Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Conclusions: Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current epidemic of paediatric obesity is consistent with a myriad of health-related comorbid conditions. Despite the higher prevalence of orthopaedic conditions in overweight children, a paucity of published research has considered the influence of these conditions on the ability to undertake physical activity. As physical activity participation is directly related to improvements in physical fitness, skeletal health and metabolic conditions, higher levels of physical activity are encouraged, and exercise is commonly prescribed in the treatment and management of childhood obesity. However, research has not correlated orthopaedic conditions, including the increased joint pain and discomfort that is commonly reported by overweight children, with decreases in physical activity. Research has confirmed that overweight children typically display a slower, more tentative walking pattern with increased forces to the hip, knee and ankle during 'normal' gait. This research, combined with anthropometric data indicating a higher prevalence of musculoskeletal malalignment in overweight children, suggests that such individuals are poorly equipped to undertake certain forms of physical activity. Concomitant increases in obesity and decreases in physical activity level strongly support the need to better understand the musculoskeletal factors associated with the performance of motor tasks by overweight and obese children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Achilles tendon has been seen to exhibit time-dependent conditioning when isometric muscle actions were of a prolonged duration, compared to those involved in dynamic activities, such as walking. Since, the effect of short duration muscle activation associated with dynamic activities is yet to be established, the present study aimed to investigate the effect of incidental walking activity on Achilles tendon diametral strain. Eleven healthy male participants refrained from physical activity in excess of the walking required to carry out necessary daily tasks and wore an activity monitor during the 24 h study period. Achilles tendon diametral strain, 2 cm proximal to the calcaneal insertion, was determined from sagittal sonograms. Baseline sonographic examinations were conducted at ∼08:00 h followed by replicate examinations at 12 and 24 h. Walking activity was measured as either present (1) or absent (0) and a linear weighting function was applied to account for the proximity of walking activity to tendon examination time. Over the course of the day the median (min, max) Achilles tendon diametral strain was −11.4 (4.5, −25.4)%. A statistically significant relationship was evident between walking activity and diametral strain (P < 0.01) and this relationship improved when walking activity was temporally weighted (AIC 131 to 126). The results demonstrate that the short yet repetitive loads generated during activities of daily living, such as walking, are sufficient to induce appreciable time-dependant conditioning of the Achilles tendon. Implications arise for the in vivo measurement of Achilles tendon properties and the rehabilitation of tendinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An iterative method for the fit optimisation of a pre-contoured fracture fixation plate for a given bone data set is presented. Both plate shape optimisation and plate fit quantification are conducted in a virtual environment utilising computer graphical methods and 3D bone and plate models. Two optimised shapes of the undersurface of an existing distal medial tibia plate were generated based on a dataset of 45 3D bone models reconstructed from computed tomography image data of Japanese tibiae. The existing plate shape achieved an anatomical fit on 13% of tibiae from the dataset. Modified plate 1 achieved an anatomical fit for 42% and modified plate 2 a fit for 67% of the bones. If either modified plate 1 or plate 2 is used, then the anatomical fit can be increased to 82% for the same dataset. Issues pertaining to any further improvement in plate fit/shape are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between deformity correction and self-reported patient satisfaction after thoracoscopic anterior scoliosis surgery is unknown. Scoliosis Research Society questionnaire scores, radiographic outcomes, and rib hump correction were prospectively assessed for a group of 100 patients pre-operatively and at two years after surgery. Patients with lower post-op major Cobb angles report significantly higher SRS scores than patients with higher post-op Cobb angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Ideally after selective thoracic fusion for Lenke Class IC (i.e. major thoracic / secondary lumbar) curves, the lumbar spine will spontaneously accommodate to the corrected position of the thoracic curve, thereby achieving a balanced spine, avoiding the need for fusion of lumbar spinal segments1. The purpose of this study was to evaluate the behaviour of the lumbar curve in Lenke IC class adolescent idiopathic scoliosis (AIS) following video-assisted thoracoscopic spinal fusion and instrumentation (VATS) of the major thoracic curve. Methods. A retrospective review of 22 consecutive patients with AIS who underwent VATS by a single surgeon was conducted. The results were compared to published literature examining the behaviour of the secondary lumbar curve where other surgical approaches were employed. Results. Twenty-two patients (all female) with AIS underwent VATS. All major thoracic curves were right convex. The average age at surgery was 14 years (range 10 to 22 years). On average 6.7 levels (6 to 8) were instrumented. The mean follow-up was 25.1 months (6 to 36). The pre-operative major thoracic Cobb angle mean was 53.8° (40° to 75°). The pre-operative secondary lumbar Cobb angle mean was 43.9° (34° to 55°). On bending radiographs, the secondary curve corrected to 11.3° (0° to 35°). The rib hump mean measurement was 15.0° (7° to 21°). At latest follow-up the major thoracic Cobb angle measured on average 27.2° (20° to 41°) (p<0.001 – univariate ANOVA) and the mean secondary lumbar curve was 27.3° (15° to 42°) (p<0.001). This represented an uninstrumented secondary curve correction factor of 37.8%. The mean rib hump measured was 6.5° (2° to 15°) (p<0.001). The results above were comparable to published series when open surgery was performed. Discussion. VATS is an effective method of correcting major thoracic curves with secondary lumbar curves. The behaviour of the secondary lumbar curve is consistent with published series when open surgery, both anterior and posterior, is performed.