185 resultados para selective metallization mechanism
Resumo:
The now-banned anorectic molecule, dexfenfluramine, promotes serotonin release through a serotonin transporter-dependent mechanism, and it has been widely prescribed for the treatment of obesity. Previous studies have identified that 5-HT(2B) receptors have important roles in dexfenfluramine side effects, that is, pulmonary hypertension, plasma serotonin level regulation, and valvulopathy. We thus investigated a putative contribution of 5-HT(2B) receptors in dexfenfluramine-dependent feeding behavior in mice. Interestingly, the hypophagic response to dexfenfluramine (3-10 mg/kg) observed in wild-type mice (1-4 h) was eliminated in mice lacking 5-HT(2B) receptors (5-HT(2B)(-/-)). These findings were further validated by the lack of hypophagic response to dexfenfluramine in wild-type mice treated with RS127445, a highly selective and potent antagonist (pKi=8.22 ± 0.24). Using microdialysis, we observed that in 5-HT(2B)(-/-) awake mice, the dexfenfluramine-induced hypothalamic peak of serotonin release (1 h) was strongly reduced (fourfold) compared with wild type. Moreover, using hypothalamic synaptosomes, we established the serotonergic neuron autonomous properties of this effect: a strong serotonin release was observed upon dexfenfluramine stimulation of synaptosome preparation from wild type but not from mice lacking active 5-HT(2B) receptors. These findings strongly suggest that activation of presynaptic 5-HT(2B) receptors is a limiting step in the serotonin transporter dependent-releasing effect of dexfenfluramine, whereas other serotonin receptors act downstream with respect to feeding behavior.
Resumo:
The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT(2B) receptors. Conversely, direct agonist stimulation of 5-HT(2B) receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT(2B) receptors and (iii) a selective 5-HT(2B) agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT(2B) receptors. The 5-HT(2B) receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT(2B) receptor should be considered as a new tractable target in the combat against depression.
Resumo:
We investigate whether framing effects of voluntary contributions are significant in a provision point mechanism. Our results show that framing significantly affects individuals of the same type: cooperative individuals appear to be more cooperative in the public bads game than in the public goods game, whereas individualistic subjects appear to be less cooperative in the public bads game than in the public goods game. At the aggregate level of pooling all individuals, the data suggests that framing effects are negligible, which is in contrast with the established result.
Resumo:
Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure–function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular “Velcro-like” mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms.
Resumo:
A model of crosslinker unbinding is implemented in a highly coarsegrained granular model of F-actin cytoskeleton. We employ this specific granular model to study the mechanisms of the compressive responses of F-actin networks. It is found that the compressive response of F-actin cytoskeleton has dependency on the strain rate. The evolution of deformation energy in the network indicates that crosslinker unbinding events can induce the remodelling of F-actin cytoskeleton in response to external loadings. The internal stress in F-actin cytoskeleton can efficiently dissipate with the help of crosslinker unbinding, which could lead to the spontaneous relaxation of living cells.
Resumo:
We characterised the effects of selective oestrogen receptor modulators (SERM) in explant cultures of human endometrium tissue. Endometrium tissues were cultured for 24 h in Millicell-CM culture inserts in serum-free medium in the presence of vehicle,17 beta-estradiol (17 beta-E2,1 nM), oestrogen receptor (ER) antagonist ICI 164.384 (40 nM), and 4-OH-tamoxifen (40 nM), raloxifene (4 nM), lasofoxifene (4 nM)and acolbifene (4 nM). Protein expression of ER alpha, ER beta 1 and Ki-67 were evaluated by immunohistochemistry (IHC). The proliferative fraction was assessed by counting the number of Ki-67 positive cells. Nuclear staining of ER( and ER(1 was observed in the glandular epithelium and stroma of pre- and postmenopausal endometrium. ER(1 protein was also localized in the endothelial cells of blood vessels. Treating premenopausal endometrium tissue with 17 beta-E2 increased the fraction of Ki-67 positive cells (p < 0.001) by 55% in glands compared to the control. Raloxifene (4 nM) increased (p < 0.05) the Ki-67 positive fraction. All other SERMS did not affect proliferation in this model. Treating postmenopausal endometrium with 17(-E2 increased (p < 0.001) the fraction of Ki-67 positive cells by 250% in glands compared to the control. A similar effect was also seen for 4-OH-tamoxifen, whereas the rest of SERMs did not stimulate proliferation. We demonstrated that oestradiol increases the fraction of proliferating cells in short term explant cultures of postmenopausal endometrium. In addition, we were able to reveal the agonistic properties of 4-OH-tamoxifen and confirm that raloxifene and next-generation SERMs acolbifene and lasofoxifene were neutral on the human postmenopausal endometrium. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Surface-enhanced Raman spectroscopy (SERS) is a potentially important tool in the rapid and accurate detection of pathogenic bacteria in biological fluids. However, for diagnostic application of this technique, it is necessary to develop a highly sensitive, stable, biocompatible and reproducible SERS-active substrate. In this work, we have developed a silver–gold bimetallic SERS surface by a simple potentiostatic electrodeposition of a thin gold layer on an electrochemically roughened nanoscopic silver substrate. The resultant substrate was very stable under atmospheric conditions and exhibited the strong Raman enhancement with the high reproducibility of the recorded SERS spectra of bacteria (E. coli, S. enterica, S. epidermidis, and B. megaterium). The coating of the antibiotic over the SERS substrate selectively captured bacteria from blood samples and also increased the Raman signal in contrast to the bare surface. Finally, we have utilized the antibiotic-coated hybrid surface to selectively identify different pathogenic bacteria, namely E. coli, S. enterica and S. epidermidis from blood samples.
Resumo:
We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure....
Resumo:
This article describes the highly sensitive and selective determination of epinephrine (EP) using self-assembled monomolecular film (SAMF) of 1,8,15,22-tetraamino-phthalocyanatonickel(II) (4α-NiIITAPc) on Au electrode. The 4α-NiIITAPc SAMF modified electrode was prepared by spontaneous adsorption of 4α-NiIITAPc from dimethylformamide solution. The modified electrode oxidizes EP at less over potential with enhanced current response in contrast to the bare Au electrode. The standard heterogeneous rate constant (k°) for the oxidation of EP at 4α-NiIITAPc SAMF modified electrode was found to be 1.94×10−2 cm s−1 which was much higher than that at the bare Au electrode. Further, it was found that 4α-NiIITAPc SAMF modified electrode separates the voltammetric signals of ascorbic acid (AA) and EP with a peak separation of 250 mV. Using amperometric method the lowest detection limit of 50 nM of EP was achieved at SAMF modified electrode. Simultaneous amperometric determination of AA and EP was also achieved at the SAMF modified electrode. Common physiological interferents such as uric acid, glucose, urea and NaCl do not interfere within the potential window of EP oxidation. The present 4α-NiIITAPc SAMF modified electrode was also successfully applied to determine the concentration of EP in commercially available injection.
Resumo:
Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.
Resumo:
Kaolinite naturally occurs in the plate form for the interlayer hydrogen bond and the distortion and adaption of tetrahedron and octahedron. But kaolinite sheets can be exfoliated to nanoscrolls artificially in laboratory through multiple-step displacement intercalation. The driving force for kaolinite sheet to be curled nanoscroll originates from the size discrepancy of Si–O tetrahedron and Al–O octahedron. The displacement intercalation promoted the platy kaolinite sheets spontaneously to be scrolled by eliminating the interlayer hydrogen bond and atomic interaction. Kaolinite nanoscrolls are hollow tubes with outer face of tetrahedral sheet and inner face of octahedral sheet. Based on the theoretical calculation it is firstly reported that the minimum interior diameter for a single kaolinite sheet to be scrolled is about 9.08 nm, and the optimal 24.30 nm, the maximum 100 nm, which is verified by the observation of scanning electron microscope and transmission electron microscope. The different adaption types and discrepancy degree between tetrahedron and octahedron generate various curling forces in different directions. The nanoscroll axes prefer the directions as [100], [1 �10], [110], [3 �10], and the relative curling force are as follows, [3 �10] > [100] = [1�10] > [110].