296 resultados para polarisation estimation
Resumo:
This paper presents a solution to the problem of estimating the monotonous tendency of a slow-varying oscillating system. A recursive Prony Analysis (PA) scheme is developed which involves obtaining a dynamic model with parameters identified by implementing the forgetting factor recursive least square (FFRLS) method. A box threshold principle is proposed to separate the dominant components, which results in an accurate estimation of the trend of oscillating systems. Performance of the proposed PA is evaluated using real-time measurements when random noise and vibration effects are present. Moreover, the proposed method is used to estimate monotonous tendency of deck displacement to assist in a safe landing of an unmanned aerial vehicle (UAV). It is shown that the proposed method can estimate instantaneous mean deck satisfactorily, making it well suited for integration into ship-UAV approach and landing guidance systems.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
Most unsignalised intersection capacity calculation procedures are based on gap acceptance models. Accuracy of critical gap estimation affects accuracy of capacity and delay estimation. Several methods have been published to estimate drivers’ sample mean critical gap, the Maximum Likelihood Estimation (MLE) technique regarded as the most accurate. This study assesses three novel methods; Average Central Gap (ACG) method, Strength Weighted Central Gap method (SWCG), and Mode Central Gap method (MCG), against MLE for their fidelity in rendering true sample mean critical gaps. A Monte Carlo event based simulation model was used to draw the maximum rejected gap and accepted gap for each of a sample of 300 drivers across 32 simulation runs. Simulation mean critical gap is varied between 3s and 8s, while offered gap rate is varied between 0.05veh/s and 0.55veh/s. This study affirms that MLE provides a close to perfect fit to simulation mean critical gaps across a broad range of conditions. The MCG method also provides an almost perfect fit and has superior computational simplicity and efficiency to the MLE. The SWCG method performs robustly under high flows; however, poorly under low to moderate flows. Further research is recommended using field traffic data, under a variety of minor stream and major stream flow conditions for a variety of minor stream movement types, to compare critical gap estimates using MLE against MCG. Should the MCG method prove as robust as MLE, serious consideration should be given to its adoption to estimate critical gap parameters in guidelines.
Resumo:
Findings from an online survey conducted by Queensland University of Technology (QUT) shows that Australia is suffering from a lack of data reflecting trip generation for use in Traffic Impact Assessments (TIAs). Current independent variables for trip generation estimation are not able to create robust outcomes as well. It is also challenging to account for the impact of the new development on public and active transport as well as the effect of trip chaining behaviour in Australian TIA studies. With this background in mind, research is being implemented by QUT to find a new approach developing a combined model of trip generation and mode choice with consideration of trip chaining effects. It is expected that the model will provide transferable outcomes as it is developed based on socio-demographic parameters. Child Care Centres within the Brisbane area have been nominated for model development. At the time, the project is in the data collection phase. Findings from the pilot survey associated with capturing trip chaining and mode choice information reveal that applying questionnaire is able to capture required information in an acceptable level. The result also reveals that several centres within an area should be surveyed in order to provide sufficient data for trip chaining and modal split analysis.
Inherent errors in pollutant build-up estimation in considering urban land use as a lumped parameter
Resumo:
Stormwater quality modelling results is subject to uncertainty. The variability of input parameters is an important source of overall model error. An in-depth understanding of the variability associated with input parameters can provide knowledge on the uncertainty associated with these parameters and consequently assist in uncertainty analysis of stormwater quality models and the decision making based on modelling outcomes. This paper discusses the outcomes of a research study undertaken to analyse the variability related to pollutant build-up parameters in stormwater quality modelling. The study was based on the analysis of pollutant build-up samples collected from 12 road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary appreciably even within the same land use. Therefore, using land use as a lumped parameter would contribute significant uncertainties in stormwater quality modelling. Additionally, it was also found that the variability in pollutant build-up can also be significant depending on the pollutant type. This underlines the importance of taking into account specific land use characteristics and targeted pollutant species when undertaking uncertainty analysis of stormwater quality models or in interpreting the modelling outcomes.