521 resultados para graphic designers
Resumo:
Competency in language and literacy are central to contemporary debates about education in Anglophone nations around the world. This paper suggests that such debates are informing not just educational policy but children’s literature itself as can be seen in Almond and McKean’s The Savage. This hybrid text combines prose and graphic narrative and narration in order to tell the story of Blue, a young British boy negotiating his identity in the aftermath of his father's death. While foregrounding a narrative of ideal masculinity, The Savage enacts and privileges a formal and thematic ideal of literacy as index of individual agency and development. Almond and McKean produce a politicised understanding of language and literacy that simultaneously positions The Savage in a textual tradition of socio-culturally disenfranchised youth, and intervenes in that tradition to (perhaps ironically) affirm the very conditions previously critiqued by that very tradition. Where earlier authors such as Barry Hines sought to challenge normative accounts of language and literacy in order to indict educational policy and praxes, Almond and McKean work to naturalise the very logics of education and agency by which their protagonist has been disenfranchised. In doing so, The Savage exemplifies current approaches to education which claim to value social and cultural diversity while imposing national standardised testing predicated on assumptions about the legitimacy of uniform standards and definitions of literacy.
Resumo:
This paper reports on students’ ability to decode mathematical graphics. The findings were: (a) some items showed an insignificant improvement over time; (b) success involves identifying critical perceptual elements in the graphic and incorporating these elements into a solution strategy; and (c) the optimal strategy capitalises on how information is encoded in the graphic. Implications include a need for teachers to be proactive in supporting students’ to develop their graphical knowledge and an awareness that knowledge varies substantially across students.
Resumo:
Stephen Krog has pointed out that landscape architecture has an ill-studied Modernist history, and further suggested that landscape architecture is too theoretically bereft to have a considered theoretical Post-Modernism anyway. The projects that make up the Sunburnt exhibition all emerge from practitioners who were educated during the Post-Modern period in Australia, roughly the 10 years between 1985 and 1995 - a period corresponding to the Australian Bicentennial celebrations in 1988. This essay will quickly trace lineages of education, office experience and ideas through the projects and practices during that period. In common with theories of Post-Modernism in architecture propounded at the time, many of the projects exhibit an interest in pluralistic views of places, cultures and issues, including engaging contextual relationships with places, and involving urban form. These designers were interested in form at a time when it was regarded as incidental rather than important.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
The effective daylighting of multistorey commercial building interiors poses an interesting problem for designers in Australia’s tropical and subtropical context. Given that a building exterior receives adequate sun and skylight as dictated by location-specific factors such as weather, siting and external obstructions; then the availability of daylight throughout its interior is dependant on certain building characteristics: the distance from a window façade (room depth), ceiling or window head height, window size and the visible transmittance of daylighting apertures. The daylighting of general stock, multistorey commercial buildings is made difficult by their design limitations with respect to some of these characteristics. The admission of daylight to these interiors is usually exclusively by vertical windows. Using conventional glazing, such windows can only admit sun and skylight to a depth of approximately 2 times the window height. This penetration depth is typically much less than the depth of the office interiors, so that core areas of these buildings receive little or no daylight. This issue is particularly relevant where deep, open plan office layouts prevail. The resulting interior daylight pattern is a relatively narrow perimeter zone bathed in (sometimes too intense) light, contrasted with a poorly daylit core zone. The broad luminance range this may present to a building occupant’s visual field can be a source of discomfort glare. Furthermore, the need in most tropical and subtropical regions to restrict solar heat gains to building interiors for much of the year has resulted in the widespread use of heavily tinted or reflective glazing on commercial building façades. This strategy reduces the amount of solar radiation admitted to the interior, thereby decreasing daylight levels proportionately throughout. However this technique does little to improve the way light is distributed throughout the office space. Where clear skies dominate weather conditions, at different times of day or year direct sunlight may pass unobstructed through vertical windows causing disability or discomfort glare for building occupants and as such, its admission to an interior must be appropriately controlled. Any daylighting system to be applied to multistorey commercial buildings must consider these design obstacles, and attempt to improve the distribution of daylight throughout these deep, sidelit office spaces without causing glare conditions. The research described in this thesis delineates first the design optimisation and then the actual prototyping and manufacture process of a daylighting device to be applied to such multistorey buildings in tropical and subtropical environments.
Resumo:
The human-technology nexus is a strong focus of Information Systems (IS) research; however, very few studies have explored this phenomenon in anaesthesia. Anaesthesia has a long history of adoption of technological artifacts, ranging from early apparatus to present-day information systems such as electronic monitoring and pulse oximetry. This prevalence of technology in modern anaesthesia and the rich human-technology relationship provides a fertile empirical setting for IS research. This study employed a grounded theory approach that began with a broad initial guiding question and, through simultaneous data collection and analysis, uncovered a core category of technology appropriation. This emergent basic social process captures a central activity of anaesthestists and is supported by three major concepts: knowledge-directed medicine, complementary artifacts and culture of anaesthesia. The outcomes of this study are: (1) a substantive theory that integrates the aforementioned concepts and pertains to the research setting of anaesthesia and (2) a formal theory, which further develops the core category of appropriation from anaesthesia-specific to a broader, more general perspective. These outcomes fulfill the objective of a grounded theory study, being the formation of theory that describes and explains observed patterns in the empirical field. In generalizing the notion of appropriation, the formal theory is developed using the theories of Karl Marx. This Marxian model of technology appropriation is a three-tiered theoretical lens that examines appropriation behaviours at a highly abstract level, connecting the stages of natural, species and social being to the transition of a technology-as-artifact to a technology-in-use via the processes of perception, orientation and realization. The contributions of this research are two-fold: (1) the substantive model contributes to practice by providing a model that describes and explains the human-technology nexus in anaesthesia, and thereby offers potential predictive capabilities for designers and administrators to optimize future appropriations of new anaesthetic technological artifacts; and (2) the formal model contributes to research by drawing attention to the philosophical foundations of appropriation in the work of Marx, and subsequently expanding the current understanding of contemporary IS theories of adoption and appropriation.
Resumo:
The critical factor in determining students' interest and motivation to learn science is the quality of the teaching. However, science typically receives very little time in primary classrooms, with teachers often lacking the confidence to engage in inquiry-based learning because they do not have a sound understanding of science or its associated pedagogical approaches. Developing teacher knowledge in this area is a major challenge. Addressing these concerns with didactic "stand and deliver" modes of Professional Development (PD) has been shown to have little relevance or effectiveness, yet is still the predominant approach used by schools and education authorities. In response to that issue, the constructivist-inspired Primary Connections professional learning program applies contemporary theory relating to the characteristics of effective primary science teaching, the changes required for teachers to use those pedagogies, and professional learning strategies that facilitate such change. This study investigated the nature of teachers' engagement with the various elements of the program. Summative assessments of such PD programs have been undertaken previously, however there was an identified need for a detailed view of the changes in teachers' beliefs and practices during the intervention. This research was a case study of a Primary Connections implementation. PD workshops were presented to a primary school staff, then two teachers were observed as they worked in tandem to implement related curriculum units with their Year 4/5 classes over a six-month period. Data including interviews, classroom observations and written artefacts were analysed to identify common themes and develop a set of assertions related to how teachers changed their beliefs and practices for teaching science. When teachers implement Primary Connections, their students "are more frequently curious in science and more frequently learn interesting things in science" (Hackling & Prain, 2008). This study has found that teachers who observe such changes in their students consequently change their beliefs and practices about teaching science. They enhance science learning by promoting student autonomy through open-ended inquiries, and they and their students enhance their scientific literacy by jointly constructing investigations and explaining their findings. The findings have implications for teachers and for designers of PD programs. Assertions related to teaching science within a pedagogical framework consistent with the Primary Connections model are that: (1) promoting student autonomy enhances science learning; (2) student autonomy presents perceived threats to teachers but these are counteracted by enhanced student engagement and learning; (3) the structured constructivism of Primary Connections resources provides appropriate scaffolding for teachers and students to transition from didactic to inquiry-based learning modes; and (4) authentic science investigations promote understanding of scientific literacy and the "nature of science". The key messages for designers of PD programs are that: (1) effective programs model the pedagogies being promoted; (2) teachers benefit from taking the role of student and engaging in the proposed learning experiences; (3) related curriculum resources foster long-term engagement with new concepts and strategies; (4) change in beliefs and practices occurs after teachers implement the program or strategy and see positive outcomes in their students; and (5) implementing this study's PD model is efficient in terms of resources. Identified topics for further investigation relate to the role of assessment in providing evidence to support change in teachers' beliefs and practices, and of teacher reflection in making such change more sustainable.
Resumo:
Value Management (VM) has been proven to provide a structured framework, together with supporting tools and techniques that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. It is identified at International level as a natural career progression for the construction service provider and as an opportunity in developing leading-edge skills. The services offered by contractors and consultants in the construction sector have been expanding. In an increasingly competitive and global marketplace, firms are seeking ways to differentiate their services to ever more knowledgeable and demanding clients. The traditional demarcations have given way, and the old definition of what contractors, designers, engineers and quantity surveyors can, and cannot do in terms of their market offering has changed. Project management, design and cost and safety consultancy services, are being delivered by a diverse range of suppliers. Value management services have been developing in various sectors in industry; from manufacturing to the military and now construction. Given the growing evidence that VM has been successful in delivering value-for-money to the client, VM would appear to be gaining some momentum as an essential management tool in the Malaysian construction sector. The recently issued VM Circular 3/2009 by the Economic Planning Unit Malaysia (EPU) possibly marks a new beginning in public sector client acceptance on the strength of VM in construction. This paper therefore attempts to study the prospects of marketing the benefits of VM by construction service providers, and how it may provide an edge in an increasingly competitive Malaysian construction industry.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
The ability of a designer – for example, interior designer, architect, landscape architect, etc. – to design for a particular target group (user and/or clients) is potentially enhanced through more targeted studies relating colour in situ. The study outlined in this paper involved participant responses to five achromatic scenes of different built environments prior to viewing the same scenes in colour. Importantly, in this study the participants, who were young designers, came to realise that colour potentially holds the power to impact on the identity of an architectural form, an interior space and/or particular elements such as doorways, furniture settings, etc., as well as influence atmosphere. Prior to discussing the study, a selection of other research, which links colour to meaning and emotions, introduces how people understand and/or feel in relation to colour. For example, yellow is said to be connected to happiness; or red evokes feelings of anger. Secondly, the need for spatial designers to understand colour in context is raised. An overview of the study is then provided. It was found that the impact of colour includes a shift in perception of aspects such as its atmosphere and youthfulness. Through studio/class discussions it was also noted the predicted age of the place, the function, and in association, the potential users when colour was added (or deleted) were often challenged.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation v primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
Software used by architectural and industrial designers – has moved from becoming a tool for drafting, towards use in verification, simulation, project management and project sharing remotely. In more advanced models, parameters for the designed object can be adjusted so a family of variations can be produced rapidly. With advances in computer aided design technology, numerous design options can now be generated and analyzed in real time. However the use of digital tools to support design as an activity is still at an early stage and has largely been limited in functionality with regard to the design process. To date, major CAD vendors have not developed an integrated tool that is able to both leverage specialized design knowledge from various discipline domains (known as expert knowledge systems) and support the creation of design alternatives that satisfy different forms of constraints. We propose that evolutionary computing and machine learning be linked with parametric design techniques to record and respond to a designer’s own way of working and design history. It is expected that this will lead to results that impact on future work on design support systems-(ergonomics and interface) as well as implicit constraint and problem definition for problems that are difficult to quantify.