193 resultados para freight
Resumo:
The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.
Resumo:
Transport and Storage Sector - Identified as one of 4 primary targets in the National Occupational Health and Safety Strategy 2002-2012 (NOHSS) The Heavy Vehicle Industry -80% of the freight task -29% of the employees in Transport and Storage 5 years on: -Transport and Storage - 22% reduction -Heavy Vehicle Industry - only an 11% reduction Intervention strategies that aren’t targeted to a specific audience may have differing levels of success due to cultural beliefs and values (McLeroy et al., 1994) Research Goal: - To explore the influence of culture on safety in the heavy vehicle industry
Resumo:
This workshop provides an ergonomic framework and design rules for the design of automotive controls, considering anthropometric design, physiologic design, biomechanic design and information design.
Resumo:
The objective of this chapter is to provide rail practitioners with a practical approach for determining safety requirements of low-cost level crossing warning devices (LCLCWDs) on an Australian railway by way of a case study. LCLCWDs, in theory, allow railway operators to improve the safety of passively controlled crossing by upgrading a larger number of level crossings with the same budget that would otherwise be used to upgrade these using the conventional active level crossing control technologies, e.g. track circuit initiated flashing light systems. The chapter discusses the experience and obstacles of adopting LCLCWDs in Australia, and demonstrates how the risk-based approach may be used to make the case for LCLCWDs.
Resumo:
Australia's airline industry was born on connecting regional communities to major cities, but almost a century later, many regional and remote communities are facing the prospect of losing their air transport services. The focus of this paper is to highlight key issues and concerns surrounding remote, rural and regional airports in Australia using a network governance framework. Contributions are focused towards regional and remote airport managers, decision makers, and policy makers to stimulate further discussion towards retaining regional and remote services to communities.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
Background. Digital information is increasingly becoming available on all aspects of the urban landscape, anywhere and any time. Physical objects (c.f. the Internet of Things) and people (c.f. the Social Web) are increasingly infused with actuators, sensors and tagged with a wealth of digital information. Urban Informatics explores these emerging digital layers of the city. However, very little is known about the challenges and new opportunities that these developments may offer to road users. As we gradually spend more time using our mobile devices as well as our car, the tension between appeasing our craving for connectedness and road safety requirements grow farther apart. Objective. The aims of this paper are to identify (a) new opportunities that Urban Informatics research can offer to our future cars and (b) potential benefits to road safety. Methods. 14 Urban Informatics research experts were grouped into seven teams of two to participate in a guided ideation (idea creation) workshop in a driving simulator. They were immersed into different driving scenarios to brainstorm innovative Urban Informatics applications in different driving contexts. This qualitative study was then evaluated in the context of road safety. Outcomes. There is a lack of articulation between Urban Informatics and Road Safety research. Several Urban Informatics applications (e.g., to enhance social interaction between people in urban environments) may provide benefits, rather than threats, towards road safety, provided they are implemented ergonomically and safely. Conclusions. This research initiates a much-needed dialogue between Urban Informatics and Road Safety disciplines, in the context of Intelligent Transport Systems, before the fast approaching digital wave invades our cars. The dialogue will help to avoid driver distraction issues similar to mobile phones use in cars. As such, it provides valuable information for future regulators and policy makers in charge of shaping our future road transport landscape.
Resumo:
The Cooperative Research Centre (CRC) for Rail Innovation is conducting a tranche of industry-led research projects looking into safer rail level crossings. This paper will provide an overview of the Affordable Level Crossings project, a project that is performing research in both engineering and human factors aspects of low-cost level crossing warning devices (LCLCWDs), and is facilitating a comparative trial of these devices over a period of 12 months in several jurisdictions. Low-cost level crossing warning devices (LCLCWDs) are characterised by the use of alternative technologies for high cost components including train detection and connectivity (e.g. radar, acoustic, magnetic induction train detection systems and wireless connectivity replacing traditional track circuits and wiring). These devices often make use of solar power where mains power is not available, and aim to make substantial savings in lifecycle costs. The project involves trialling low-cost level crossing warning devices in shadow-mode, where devices are installed without the road-user interface at a number of existing level crossing sites that are already equipped with conventional active warning systems. It may be possible that the deployment of lower-cost devices can provide a significantly larger safety benefit over the network than a deployment of expensive conventional devices, as the lower cost would allow more passive level crossing sites to be upgraded with the same capital investment. The project will investigate reliability and safety integrity issues of the low-cost devices, as well as evaluate lifecycle costs and investigate human factors issues related to warning reliability. This paper will focus on the requirements and safety issues of LCLCWDs, and will provide an overview of the Rail CRC projects.
Resumo:
Railway level crossings present an arguably unique interface between two transport systems that differ markedly in their performance characteristics, their degrees of regulation and their safety cultures. Railway level crossings also differ dramatically in the importance they represent as safety issues for the two modes. For rail, they are the location of a large proportion of fatalities within the system and are therefore the focus of much safety concern. For the road system, they comprise only a few percent of all fatalities, although the potential for catastrophic outcomes exist. Rail operators and regulators have traditionally required technologies to be failsafe and to demonstrate high levels of reliability. The resultant level of complexity and cost has both limited their extent of application and led to a need to better understand how motorists comprehend and respond to these systems.
Resumo:
A core component for the prevention of re-occurring incidents within the rail industry is rail safety investigations. Within the current Australasian rail industry, the nature of incident investigations varies considerably between organisations. As it stands, most of the investigations are conducted by the various State Rail Operators and Regulators, with the more major investigations in Australia being conducted or overseen by the Australian Transport Safety Bureau (ATSB). Because of the varying nature of these investigations, the current training methods for rail incident investigators also vary widely. While there are several commonly accepted training courses available to investigators in Australasia, none appear to offer the breadth of development needed for a comprehensive pathway. Furthermore, it appears that no single training course covers the entire breadth of competencies required by the industry. These courses range in duration between a few days to several years, and some were run in-house while others are run by external consultants or registered training organisations. Through consultations with rail operators and regulators in Australasia, this paper will identify capabilities required for rail incident investigation and explore the current training options available for rail incident investigators.
Resumo:
Low-cost level crossings are often criticized as being unsafe. Does a SIL (safety integrity level) rating make the railway crossing any safer? This paper discusses how a supporting argument might be made for low-cost level crossing warning devices with lower levels of safety integrity and issues such as risk tolerability and derivation of tolerable hazard rates for system-level hazards. As part of the design of such systems according to fail-safe principles, the paper considers the assumptions around the pre-defined safe states of existing warning devices and how human factors issues around such states can give rise to additional hazards.
Resumo:
This paper describes an innovative platform that facilitates the collection of objective safety data around occurrences at railway level crossings using data sources including forward-facing video, telemetry from trains and geo-referenced asset and survey data. This platform is being developed with support by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper provides a description of the underlying accident causation model, the development methodology and refinement process as well as a description of the data collection platform. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
This exhibition showcases the work of Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students in response to issues of sustainability in the Port of Bundaberg. The Port of Bundaberg project site, just north of Bargara, is a complex mix of port facilities, urban development, coastal conservation and agriculture. The project brief was to prepare a range of strategic planning and environmental management options for future urban and infrastructure development in the Port area. Postgraduate Landscape Architecture and final year Undergraduate Civil and Environmental Engineering students worked over one teaching semester with guidance from QUT academics and partner organisations to produce strategic planning, environmental management planning and design options for managing future growth in the area. Specifically, these make recommendations regarding: • Interface between Port lands and residential settlement; • Future residential/urban development; • Transport accessibility and mobility – road, rail, tramway and maritime for personal and freight movement; • Local and regional connectivity - both physical and perceptual- between urban settlements of Port of Bundaberg – Burnett Heads and the surrounding area; • Recreational and tourism development; • Public/private space mix and access; • Ecological conservation assets; • Natural and cultural heritage assets The project process involved three visits to the site by QUT students and staff. The first visit at the project’s commencement included a formal briefing session with project partners the Burnett Mary Regional Group, Port of Brisbane Corporation, and Queensland Department of Local Government and Planning. Formal and informal community engagement facilitated by the Burnett Heads Progress Association also allowed students to gain some understanding of local values. A second visit mid-project involved a ‘Futures Workshop’ with students and community. This enabled the students to gain the benefit of local knowledge and experience in response to their work-in-progress, and to establish priorities for project completion. It strengthened the relationship between the community and the students. A final exhibition, ‘Port of Bundaberg Futures' was held at the Port TAFE Campus upon the completion of the project. The student work exhibited offers a diverse number of alternative options for the future urban development, infrastructure and environmental planning that the partner organisations have used for ongoing consultation.
Resumo:
This paper describes a risk model for estimating the likelihood of collisions at low-exposure railway level crossings, demonstrating the effect that differences in safety integrity can have on the likelihood of a collision. The model facilitates the comparison of safety benefits between level crossings with passive controls (stop or give-way signs) and level crossings that have been hypothetically upgraded with conventional or low-cost warning devices. The scenario presented illustrates how treatment of a cross-section of level crossings with low cost devices can provide a greater safety benefit compared to treatment with conventional warning devices for the same budget.