166 resultados para fat intake
Resumo:
Background To determine whether changes in appetite and energy intake (EI) can be detected and play a role in the effectiveness of interventions, it is necessary to identify their variability under normal conditions. We assessed the reproducibility of subjective appetite ratings and ad libitum test meal EI after a standardised pre-load in overweight and obese males. Methods Fifteen overweight and obese males (BMI 30.3 ± 4.9 kg/m2, aged 34.9 ± 10.6 years) completed two identical test days, 7 days apart. Participants were provided with a standardised fixed breakfast (1676 kJ) and 5 h later an ad libitum pasta lunch. An electronic appetite rating system was used to assess subjective ratings before and after the fixed breakfast, and periodically during the postprandial period. EI was assessed at the ad libitum lunch meal. Sample size estimates for paired design studies were calculated. Results Appetite ratings demonstrated a consistent oscillating pattern between test days, and were more reproducible for mean postprandial than fasting ratings. The correlation between ad libitum EI on the two test days was r = 0.78 (P < 0.01). Using a paired design and a power of 0.8, a minimum of 12 participants would be needed to detect a 10 mm change in 5 h postprandial mean ratings and 17 to detect a 500 kJ difference in ad libitum EI. Conclusion Intra-individual variability of appetite and ad libitum test meal EI in overweight and obese males is comparable to previous reports in normal weight adults. Sample size requirements for studies vary depending on the parameter of interest and sensitivity needed.
Resumo:
Objective Migraine is a highly disabling disease affecting a significant proportion of the Australian population. The Methylenetetrahydrofolate Reductase (MTHFR) C677T variant has been associated with increased levels of homocysteine and risk of migraine with aura (MA). Folic acid, Vitamin B6 and B12 supplementation has been previously shown to reduce increased levels of homocysteine and decrease migraine symptoms. However the influence of dietary folate intake on migraine has been unclear. The aim of the current study was to analyse the association of dietary folate intake in the form of dietary folate equivalent (DFE), folic acid (FA) and total food folate (TFF) on migraine frequency, severity and disability. Methods A cohort of 141 adult females of Caucasian descent with MA was genotyped for the MTHFRC677T variant using restriction enzyme digestion. Dietary folate information was collected from all participants and analysed using the “FoodWorks” 2009 package. Folate consumption was compared to migraine frequency, severity and disability using linear regression. Results A significant inverse relation was observed between DFE [R2= 0.201, P= 0.045, CI (-0.004, -0.001)] and FA [R2= 0.255, P= 0.036, 95% CI (-0.009, -0.002)] consumption and migraine frequency. It was also observed that in individuals with the CC genotype for the MTHFR C677T variant, migraine frequency was significantly linked to FA consumption [R2= 0.077, P= 0.029, CI (-0.009, -0.005)]. Conclusions The results from this study indicate that folate intake in the form of folic acid may influence migraine frequency in female MA sufferers.
Resumo:
The evidence for nutritional support in COPD is almost entirely based on oral nutritional supplements (ONS) yet despite this dietary counseling and food fortification (DA) are often used as the first line treatment for malnutrition. This study aimed to investigate the effectiveness of ONS vs. DA in improving nutritional intake in malnourished outpatients with COPD. 70 outpatients (BMI 18.4 SD 1.6 kg/m2, age 73 SD 9 years, severe COPD) were randomised to receive a 12-week intervention of either ONS or DA (n 33 ONS vs. n 37 DA). Paired t-test analysis revealed total energy intakes significantly increased with ONS at week 6 (+302 SD 537 kcal/d; p = 0.002), with a slight reduction at week 12 (+243 SD 718 kcal/d; p = 0.061) returning to baseline levels on stopping supplementation. DA resulted in small increases in energy that only reached significance 3 months post-intervention (week 6: +48 SD 623 kcal/d, p = 0.640; week 12: +157 SD 637 kcal/d, p = 0.139; week 26: +247 SD 592 kcal/d, p = 0.032). Protein intake was significantly higher in the ONS group at both week 6 and 12 (ONS: +19.0 SD 25.0 g/d vs. DA: +1.0 SD 13.0 g/d; p = 0.033 ANOVA) but no differences were found at week 26. Vitamin C, Iron and Zinc intakes significantly increased only in the ONS group. ONS significantly increased energy, protein and several micronutrient intakes in malnourished COPD patients but only during the period of supplementation. Trials investigating the effects of combined nutritional interventions are required.
Resumo:
Objectives To estimate the burden of disease attributed to low fruit and vegetable intake by sex and age group in South Africa for the year 2000. Design The analysis follows the World Health Organization comparative risk assessment (CRA) methodology. Populationattributable fractions were calculated from South African prevalence data from dietary surveys and applied to the revised South African burden of disease estimates for 2000. A theoretical maximum distribution of 600 g per day for fruit and vegetable intake was chosen. Monte Carlo simulationmodelling techniques were used for uncertainty analysis. Setting South Africa. Subjects Adults ≥ 15 years. Outcome measures Mortality and disability-adjusted life years (DALYs), from ischaemic heart disease, ischaemic stroke, lung cancer, gastric cancer, colorectal cancer and oesophageal cancer. Results Low fruit and vegetable intake accounted for 3.2% of total deaths and 1.1% of the 16.2 million attributable DALYs. For both males and females the largest proportion of total years of healthy life lost attributed to low fruit and vegetable intake was for ischaemic heart disease (60.6% and 52.2%, respectively). Ischaemic stroke accounted for 17.8% of attributable DALYs for males and 32.7% for females. For the related cancers, the leading attributable DALYs for men and women were oesophageal cancer (9.8% and 7.0%, respectively) and lung cancer (7.8% and 4.7%, respectively). Conclusions A high intake of fruit and vegetables can make a significant contribution to decreasing mortality from certain diseases. The challenge lies in creating the environment that facilitates changes in dietary habits such as the increased intake of fruit and vegetables.
Resumo:
Quantifying the competing rates of intake and elimination of persistent organic pollutants (POPs) in the human body is necessary to understand the levels and trends of POPs at a population level. In this paper we reconstruct the historical intake and elimination of ten polychlorinated biphenyls (PCBs) and five organochlorine pesticides (OCPs) from Australian biomonitoring data by fitting a population-level pharmacokinetic (PK) model. Our analysis exploits two sets of cross-sectional biomonitoring data for PCBs and OCPs in pooled blood serum samples from the Australian population that were collected in 2003 and 2009. The modeled adult reference intakes in 1975 for PCB congeners ranged from 0.89 to 24.5 ng/kg bw/day, lower than the daily intakes of OCPs ranging from 73 to 970 ng/kg bw/day. Modeled intake rates are declining with half-times from 1.1 to 1.3 years for PCB congeners and 0.83 to 0.97 years for OCPs. The shortest modeled intrinsic human elimination half-life among the compounds studied here is 6.4 years for hexachlorobenzene, and the longest is 30 years for PCB-74. Our results indicate that it is feasible to reconstruct intakes and to estimate intrinsic human elimination half-lives using the population-level PK model and biomonitoring data only. Our modeled intrinsic human elimination half-lives are in good agreement with values from a similar study carried out for the population of the United Kingdom, and are generally longer than reported values from other industrialized countries in the Northern Hemisphere.
Resumo:
Meat/meat alternatives (M/MA) are key sources of Fe, Zn and protein, but intake tends to be low in young children. Australian recommendations state that Fe-rich foods, including M/MA, should be the first complementary foods offered to infants. The present paper reports M/MA consumption of Australian infants and toddlers, compares intake with guidelines, and suggests strategies to enhance adherence to those guidelines. Mother–infant dyads recruited as part of the NOURISH and South Australian Infants Dietary Intake studies provided 3 d of intake data at three time points: Time 1 (T1) (n 482, mean age 5·5 (SD 1·1) months), Time 2 (T2) (n 600, mean age 14·0 (SD 1·2) months) and Time 3 (T3) (n 533, mean age 24 (SD 0·7) months). Of 170 infants consuming solids and aged greater than 6 months at T1, 50 (29 %) consumed beef, lamb, veal (BLV) or pork on at least one of 3 d. Commercial infant foods containing BLV or poultry were the most common form of M/MA consumed at T1, whilst by T2 BLV mixed dishes (including pasta bolognaise) became more popular and remained so at T3. The processed M/MA increased in popularity over time, led by pork (including ham). The present study shows that M/MA are not being eaten by Australian infants or toddlers regularly enough; or in adequate quantities to meet recommendations; and that the form in which these foods are eaten can lead to smaller M/MA serve sizes and greater Na intake. Parents should be encouraged to offer M/MA in a recognisable form, as one of the first complementary foods, in order to increase acceptance at a later age.
Resumo:
Enhancement of bone mineral acquisition during growth may be a useful preventive strategy against osteoporosis. The aim of this study was to explore the lean mass, strength, and bone mineral response to a 10-month, high-impact, strength-building exercise program in 71 premenarcheal girls, aged 9–10 years. Lean body mass, total body (TB), lumbar spine (LS), proximal femur (PF), and femoral neck (FN) bone mineral were measured using the Hologic QDR 2000+ bone densitometer. Strength was assessed using a grip dynamometer and the Cybex isokinetic dynamometer (Cybex II). At baseline, no significant difference in body composition, pubertal development, calcium intake, physical activity, strength, or bone mineral existed between groups. At completion, there were again no differences in height, total body mass, pubertal development, calcium intake, or external physical activity. In contrast, the exercise group gained significantly more lean mass, less body fat content, greater shoulder, knee and grip strength, and greater TB, LS, PF, and FN BMD (exercise: TB 3.5%, LS 4.8%, PF 4.5%, and FN 12.0%) compared with the controls (controls: TB 1.2%, LS 1.2%, PF 1.3%, and FN 1.7%). TB bone mineral content (BMC), LS BMC, PF BMC, FN BMC, LS bone mineral apparent density (BMAD), and FN bone area also increased at a significantly greater rate in the exercise group compared with the controls. In multiple regression analysis, change in lean mass was the primary determinant of TB, FN, PF, and LS BMD accrual. Although a large proportion of bone mineral accrual in the premenarcheal skeleton was related to growth, an osteogenic effect was associated with exercise. These results suggest that high-impact, strength building exercise is beneficial for premenarcheal strength, lean mass gains, and bone mineral acquisition.
Resumo:
Antioxidants in acute physical exercise and exercise training remain a hot topic in sport nutrition, exercise physiology and biology, in general (Jackson, 2008; Margaritis and Rousseau, 2008; Gomez-Cabrera et al., 2012; Nikolaidis et al., 2012). During the past few decades, antioxidants have received attention predominantly as a nutritional strategy for preventing or minimising detrimental effects of reactive oxygen and nitrogen species (RONS), which are generated during and after strenuous exercise (Jackson, 2008, 2009; Powers and Jackson, 2008). Antioxidant supplementation has become a common practice among athletes as a means to (theoretically) reduce oxidative stress, promote recovery and enhance performance (Peternelj and Coombes, 2011). However, until now, requirements of antioxidant micronutrients and antioxidant compounds for athletes training for and competing in different sport events, including marathon running, triathlon races or team sport events involving repeated sprinting, have not been determined sufficiently (Williams et al., 2006; Margaritis and Rousseau, 2008). Crucially, evidence has been emerging that higher dosages of antioxidants may not necessarily be beneficial in this context, but can also elicit detrimental effects by interfering with performance-enhancing (Gomez-Cabrera et al., 2008) and health-promoting training adaptations (Ristow et al., 2009). As originally postulated in a pioneering study on exercise-induced production of RONS by Davies et al. (1982) in the early 1980s, evidence has been increasing in recent years that RONS are not only damaging agents, but also act as signalling molecules for regulating muscle function (Reid, 2001; Jackson, 2008) and for initiating adaptive responses to exercise (Jackson, 2009; Powers et al., 2010). The recognition that antioxidants could, vice versa, interact with the signalling pathways underlying the responses to acute (and repeated) bouts of exercise has contributed important novel aspects to the continued discussion on antioxidant requirements for athletes. In view of the recent advances in this field, it is the aim of this report to examine the current knowledge of antioxidants, in particular of vitamins C and E, in the basic nutrition of athletes. While overviews on related topics including basic mechanisms of exercise-induced oxidative stress, redox biology, antioxidant defence systems and a summary of studies on antioxidant supplementation during exercise training are provided, this does not mean that this report is comprehensive. Several issues of the expanding and multidisciplinary field of antioxidants and exercise are covered elsewhere in this book and/or in the literature. Exemplarily, the reader is referred to reviews on oxidative stress (Konig et al., 2001; Vollaard et al., 2005; Knez et al., 2006; Powers and Jackson, 2008; Nikolaidis et al., 2012), redox-sensitive signalling and muscle function (Reid, 2001; Vollaard et al., 2005; Jackson, 2008; Ji, 2008; Powers and Jackson, 2008; Powers et al., 2010; Radak et al., 2013) and antioxidant supplementation (Williams et al., 2006; Peake et al., 2007; Peternelj and Coombes, 2011) in the context with exercise. Within the scope of the report, we rather aim to address the question regarding requirements of antioxidants, specifically vitamins C and E, during exercise training, draw conclusions and provide practical implications from the recent research.
Resumo:
Although a number of studies have examined the role of gastric emptying (GE) in obesity, the influences of habitual physical activity level, body composition and energy expenditure (EE) on GE have received very little consideration. In this study, we have compared GE in active and inactive males, and we have characterised relationships with body composition (fat and fat free mass) and EE. Forty-four males (Active: n=22, Inactive: n=22; range BMI 21-36kg/m2; range percent fat mass 9-42%) were studied, with GE of a standardised (1676 kJ) pancake meal being assessed by 13C-octanoic acid breath test, body composition by air displacement plethysmography, resting metabolic rate (RMR) by indirect calorimetry and activity EE (AEE) by accelerometry. Results showed that GE was faster in active compared to inactive males (mean ±SD half time (t1/2): Active: 157±18 and Inactive: 179±21 min, p<0.001). When data from both groups were pooled, GE t1/2 was associated with percent fat mass (r=0.39, p<0.01) and AEE (r =-0.46, p<0.01). After controlling for habitual physical activity status, the association between AEE and GE remained, but not that for percent fat mass and GE. BMI and RMR were not associated with GE. In summary, faster GE is considered to be a marker of a habitually active lifestyle in males, and is associated with a higher AEE and lower percent fat mass. The possibility that GE contributes to a gross physiological regulation (or dysregulation) of food intake with physical activity level deserves further investigation.
Resumo:
Background/Aims To examine the nutritional profile of baby and toddler foods sold in Australia. Methods Nutrient information for baby and toddler foods available at Australian supermarkets was collected between August and December 2013. Levels of declared energy, total fat, saturated fat, total sugar, sodium and estimated added sugar were examined, as well as the presence of additional micronutrients on the label. The Health Star Rating (HSR) system was used to determine nutritional quality. The range of products on offer was also examined by product type and by the age category for which the product was marketed. Results Of the 309 products included, 29 % were fortified. On a per 100 g basis, these 309 products provided a mean (±SD) of 476 ± 486 kJ, 1.6 ± 2.4 g total fat, 10.7 ± 12.2 g total sugar, 2.7 ± 7.4 g added sugar, and 33.5 ± 66.5 mg sodium. Fruit-based products or products with fruit listed as an ingredient (58 %) were the predominant product type. On the nutrition label, 42 % displayed at least one additional micronutrient while 37 % did not display saturated fat. The most common HSR was four stars (45 %) and 6? months was the most commonly identified targeted age group (36 %). Conclusions The majority of baby and toddler foods sold in Australian supermarkets are ready-made fruit-based products aimed at children under 12 months of age. Baby and toddler foods are overlooked in public policy discussions pertaining to population nutrient intake but their relatively high sugar content deriving from fruits requires close attention to ensure these foods do not replace other more nutrient dense foods, given children have an innate preference for sweet tastes.
Resumo:
This thesis provides the first detailed data describing the dietary intake of first-born Australian children aged 12-16 months. Overall, quality of intake could improve, with toddlers being exposed to energy-dense, nutrient-poor foods which may adversely affect the development of long-term healthy food preferences and growth trajectory. The leaner, but healthy weight toddler who exhibited more frequent food refusal was described a fussy eater or prompted higher maternal concern. However these behaviours are consistent with typical child development during the second year of life. Mothers can be supported to understand food refusal as manifestation of children's ability to self-regulate energy intake.
Resumo:
The increase in the number of individuals living alone has implications for nutrition and health outcomes. This review aimed to investigate whether there is a difference in food and nutrient intake between adults living alone and those living with others. Eight electronic databases were searched, using terms related to living alone, nutrition, food, and socioeconomic factors. Forty-one papers met the inclusion criteria, and data of interest were extracted. Results varied but suggested that, compared with persons who do not live alone, persons who live alone have a lower diversity of food intake, a lower consumption of some core foods groups (fruit, vegetables, and fish) and a higher likelihood of having an unhealthy dietary pattern. Associations between living alone and nutrient intake were unclear. Men living alone were more often observed to be at greater risk of undesirable intakes than women. The findings of this review suggest that living alone could negatively affect some aspects of food intake and contribute to the relationship between living alone and poor health outcomes, although associations could vary between socioeconomic groups. Further research is required to help to elucidate these findings.
Resumo:
Objective We examined whether exposure to a greater number of fruits, vegetables, and noncore foods (ie, nutrient poor and high in saturated fats, added sugars, or added salt) at age 14 months was related to children’s preference for and intake of these foods as well as maternal-reported food fussiness and measured child weight status at age 3.7 years. Methods This study reports secondary analyses of longitudinal data from mothers and children (n=340) participating in the NOURISH randomized controlled trial. Exposure was quantified as the number of food items (n=55) tried by a child from specified lists at age 14 months. At age 3.7 years, food preferences, intake patterns, and fussiness (also at age 14 months) were assessed using maternal-completed, established questionnaires. Child weight and length/height were measured by study staff at both age points. Multivariable linear regression models were tested to predict food preferences, intake patterns, fussy eating, and body mass index z score at age 3.7 years adjusting for a range of maternal and child covariates. Results Having tried a greater number of vegetables, fruits, and noncore foods at age 14 months predicted corresponding preferences and higher intakes at age 3.7 years but did not predict child body mass index z score. Adjusting for fussiness at age 14 months, having tried more vegetables at age 14 months was associated with lower fussiness at age 3.7 years. Conclusions These prospective analyses support the hypothesis that early taste and texture experiences influence subsequent food preferences and acceptance. These findings indicate introduction to a variety of fruits and vegetables and limited noncore food exposure from an early age are important strategies to improve later diet quality.
Resumo:
Photographic and image-based dietary records have limited evidence evaluating their performance and use among adults with a chronic disease. This study evaluated the performance of a mobile phone image-based dietary record, the Nutricam Dietary Assessment Method (NuDAM), in adults with type 2 diabetes mellitus (T2DM). Criterion validity was determined by comparing energy intake (EI) with total energy expenditure (TEE) measured by the doubly-labelled water technique. Relative validity was established by comparison to a weighed food record (WFR). Inter-rater reliability was assessed by comparing estimates of intake from three dietitians. Ten adults (6 males, age=61.2±6.9 years, BMI=31.0±4.5 kg/m2) participated. Compared to TEE, mean EI was under-reported using both methods, with a mean ratio of EI:TEE 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. There was moderate to high correlations between the NuDAM and WFR for energy (r=0.57), carbohydrate (r=0.63, p<0.05), protein (r=0.78, p<0.01) and alcohol (rs=0.85, p<0.01), with a weaker relationship for fat (r=0.24). Agreement between dietitians for nutrient intake for the 3-day NuDAM (ICC = 0.77-0.99) was marginally lower when compared with the 3-day WFR (ICC=0.82-0.99). All subjects preferred using the NuDAM and were willing to use it again for longer recording periods.
Resumo:
Aerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fatmax) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fatmax and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fatmax measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test. Fifteen healthy males [body mass index 23.1±0.6 kg/m2, maximal oxygen consumption () 52.0±2.0 ml/kg/min] completed a maximal test and two identical submaximal incremental tests on ergocycle (30-min rest followed by 5-min stages with increments of 7.5% of the maximal power output). Fat and carbohydrate oxidation rates were determined using indirect calorimetry. Fatmax was determined with three approaches: the sine model (SIN), measured values (MV) and 3rd polynomial curve (P3). Intra-individual coefficients of variation (CVs) and limits of agreement were calculated. CV for Fatmax determined with SIN was 16.4% and tended to be lower than with P3 and MV (18.6% and 20.8%, respectively). Limits of agreement for Fatmax were −2±27% of with SIN, −4±32 with P3 and −4±28 with MV. CVs of oxygen uptake, carbon dioxide production and respiratory exchange rate were <10% at rest and <5% during exercise. Conversely, CVs of fat oxidation rates (20% at rest and 24–49% during exercise) and carbohydrate oxidation rates (33.5% at rest, 8.5–12.9% during exercise) were higher. The intra-individual variability of Fatmax and fat oxidation rates was high (CV>15%), regardless of the data analysis approach employed. Further research on the determinants of the variability of Fatmax and fat oxidation rates is required.