Reproducibility of fatmax and fat oxidation rates during exercise in recreationally trained males


Autoria(s): Croci, Ilaria; Borrani, Fabio; Byrne, Nuala; Wood, Rachel; Hickman, Ingrid; Cheneviere, Xavier; Malatesta, Davide
Data(s)

2014

Resumo

Aerobic exercise training performed at the intensity eliciting maximal fat oxidation (Fatmax) has been shown to improve the metabolic profile of obese patients. However, limited information is available on the reproducibility of Fatmax and related physiological measures. The aim of this study was to assess the intra-individual variability of: a) Fatmax measurements determined using three different data analysis approaches and b) fat and carbohydrate oxidation rates at rest and at each stage of an individualized graded test. Fifteen healthy males [body mass index 23.1±0.6 kg/m2, maximal oxygen consumption () 52.0±2.0 ml/kg/min] completed a maximal test and two identical submaximal incremental tests on ergocycle (30-min rest followed by 5-min stages with increments of 7.5% of the maximal power output). Fat and carbohydrate oxidation rates were determined using indirect calorimetry. Fatmax was determined with three approaches: the sine model (SIN), measured values (MV) and 3rd polynomial curve (P3). Intra-individual coefficients of variation (CVs) and limits of agreement were calculated. CV for Fatmax determined with SIN was 16.4% and tended to be lower than with P3 and MV (18.6% and 20.8%, respectively). Limits of agreement for Fatmax were −2±27% of with SIN, −4±32 with P3 and −4±28 with MV. CVs of oxygen uptake, carbon dioxide production and respiratory exchange rate were <10% at rest and <5% during exercise. Conversely, CVs of fat oxidation rates (20% at rest and 24–49% during exercise) and carbohydrate oxidation rates (33.5% at rest, 8.5–12.9% during exercise) were higher. The intra-individual variability of Fatmax and fat oxidation rates was high (CV>15%), regardless of the data analysis approach employed. Further research on the determinants of the variability of Fatmax and fat oxidation rates is required.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/88606/

Publicador

Public Library of Science

Relação

http://eprints.qut.edu.au/88606/1/88606.pdf

DOI:10.1371/journal.pone.0097930

Croci, Ilaria, Borrani, Fabio, Byrne, Nuala, Wood, Rachel, Hickman, Ingrid, Cheneviere, Xavier, & Malatesta, Davide (2014) Reproducibility of fatmax and fat oxidation rates during exercise in recreationally trained males. PLoS One, 9(6), e97930(1-10).

Direitos

Copyright 2014 Croci et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fonte

Faculty of Health; Institute of Health and Biomedical Innovation

Tipo

Journal Article