377 resultados para disease modifying antirheumatic drug
Resumo:
Osteoarthritis (OA) is a chronic, non-inflammatory type of arthritis, which usually affects the movable and weight bearing joints of the body. It is the most common joint disease in human beings and common in elderly people. Till date, there are no safe and effective diseases modifying OA drugs (DMOADs) to treat the millions of patients suffering from this serious and debilitating disease. However, recent studies provide strong evidence for the use of mesenchymal stem cell (MSC) therapy in curing cartilage related disorders. Due to their natural differentiation properties, MSCs can serve as vehicles for the delivery of effective, targeted treatment to damaged cartilage in OA disease. In vitro, MSCs can readily be tailored with transgenes with anti-catabolic or pro-anabolic effects to create cartilage-friendly therapeutic vehicles. On the other hand, tissue engineering constructs with scaffolds and biomaterials holds promising biological cartilage therapy. Many of these strategies have been validated in a wide range of in vitro and in vivo studies assessing treatment feasibility or efficacy. In this review, we provide an outline of the rationale and status of stem-cell-based treatments for OA cartilage, and we discuss prospects for clinical implementation and the factors crucial for maintaining the drive towards this goal.
Resumo:
Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair.
Resumo:
Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist of ghrelin, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, roles in adipogenesis, pancreatic homeostasis and cancer.
Resumo:
This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).
Resumo:
An existing model for solvent penetration and drug release from a spherically-shaped polymeric drug delivery device is revisited. The model has two moving boundaries, one that describes the interface between the glassy and rubbery states of polymer, and another that defines the interface between the polymer ball and the pool of solvent. The model is extended so that the nonlinear diffusion coefficient of drug explicitly depends on the concentration of solvent, and the resulting equations are solved numerically using a front-fixing transformation together with a finite difference spatial discretisation and the method of lines. We present evidence that our scheme is much more accurate than a previous scheme. Asymptotic results in the small-time limit are presented, which show how the use of a kinetic law as a boundary condition on the innermost moving boundary dictates qualitative behaviour, the scalings being very different to the similar moving boundary problem that arises from modelling the melting of an ice ball. The implication is that the model considered here exhibits what is referred to as ``non-Fickian'' or Case II diffusion which, together with the initially constant rate of drug release, has certain appeal from a pharmaceutical perspective.
Resumo:
The use of mesoporous bioactive glasses (MBG) for drug delivery and bone tissue regeneration has grown significantly over the past 5 years. In this review, we highlight the recent advances made in the preparation of MBG particles, spheres, fibers and scaffolds. The advantages of MBG for drug delivery and bone scaffold applications are related to this material’s well-ordered mesopore channel structure, superior bioactivity, and the application for the delivery of both hydrophilic and hydrophobic drugs. A brief forward-looking perspective on the potential clinical applications of MBG in regenerative medicine is also discussed.
Resumo:
An inverse association exists between some bacterial infections and the prevalence of asthma. We investigated whether Streptococcus pneumoniae infection protects against asthma using mouse models of ovalbumin (OVA)-induced allergic airway disease (AAD). Mice were intratracheally infected or treated with killed S. pneumoniae before, during or after OVA sensitisation and subsequent challenge. The effects of S. pneumoniae on AAD were assessed. Infection or treatment with killed S. pneumoniae suppressed hallmark features of AAD, including antigen-specific T-helper cell (Th) type 2 cytokine and antibody responses, peripheral and pulmonary eosinophil accumulation, goblet cell hyperplasia, and airway hyperresponsiveness. The effect of infection on the development of specific features of AAD depended on the timing of infection relative to allergic sensitisation and challenge. Infection induced significant increases in regulatory T-cell (Treg) numbers in lymph nodes, which correlated with the degree of suppression of AAD. Tregs reduced T-cell proliferation and Th2 cytokine release. The suppressive effects of infection were reversed by anti-CD25 treatment. Respiratory infection or treatment with S. pneumoniae attenuates allergic immune responses and suppresses AAD. These effects may be mediated by S. pneumoniae-induced Tregs. This identifies the potential for the development of therapeutic agents for asthma from S. pneumoniae.