170 resultados para decision support system
Resumo:
A hospital consists of a number of wards, units and departments that provide a variety of medical services and interact on a day-to-day basis. Nearly every department within a hospital schedules patients for the operating theatre (OT) and most wards receive patients from the OT following post-operative recovery. Because of the interrelationships between units, disruptions and cancellations within the OT can have a flow-on effect to the rest of the hospital. This often results in dissatisfied patients, nurses and doctors, escalating waiting lists, inefficient resource usage and undesirable waiting times. The objective of this study is to use Operational Research methodologies to enhance the performance of the operating theatre by improving elective patient planning using robust scheduling and improving the overall responsiveness to emergency patients by solving the disruption management and rescheduling problem. OT scheduling considers two types of patients: elective and emergency. Elective patients are selected from a waiting list and scheduled in advance based on resource availability and a set of objectives. This type of scheduling is referred to as ‘offline scheduling’. Disruptions to this schedule can occur for various reasons including variations in length of treatment, equipment restrictions or breakdown, unforeseen delays and the arrival of emergency patients, which may compete for resources. Emergency patients consist of acute patients requiring surgical intervention or in-patients whose conditions have deteriorated. These may or may not be urgent and are triaged accordingly. Most hospitals reserve theatres for emergency cases, but when these or other resources are unavailable, disruptions to the elective schedule result, such as delays in surgery start time, elective surgery cancellations or transfers to another institution. Scheduling of emergency patients and the handling of schedule disruptions is an ‘online’ process typically handled by OT staff. This means that decisions are made ‘on the spot’ in a ‘real-time’ environment. There are three key stages to this study: (1) Analyse the performance of the operating theatre department using simulation. Simulation is used as a decision support tool and involves changing system parameters and elective scheduling policies and observing the effect on the system’s performance measures; (2) Improve viability of elective schedules making offline schedules more robust to differences between expected treatment times and actual treatment times, using robust scheduling techniques. This will improve the access to care and the responsiveness to emergency patients; (3) Address the disruption management and rescheduling problem (which incorporates emergency arrivals) using innovative robust reactive scheduling techniques. The robust schedule will form the baseline schedule for the online robust reactive scheduling model.
Resumo:
In order to make good decisions about the design of information systems, an essential skill is to understand process models of the business domain the system is intended to support. Yet, little knowledge to date has been established about the factors that affect how model users comprehend the content of process models. In this study, we use theories of semiotics and cognitive load to theorize how model and personal factors influence how model viewers comprehend the syntactical information of process models. We then report on a four-part series of experiments, in which we examined these factors. Our results show that additional semantical information impedes syntax comprehension, and that theoretical knowledge eases syntax comprehension. Modeling experience further contributes positively to comprehension efficiency, measured as the ratio of correct answers to the time taken to provide answers. We discuss implications for practice and research.
Resumo:
Purpose – This paper presents findings of a research study aimed at identifying critical sustainability factors for improved implementation of Industrialised Building Systems (IBS). It also highlights the importance of decision support, through the establishment of decision making guidelines, for sustainability deliverables in IBS development. Design/methodology/approach – A broad range of sustainability factors, as perceived by researchers and practitioners, are identified through a comprehensive literature study. A study of the survey and statistical data analysis is conducted to examine the criticality of these sustainability factors in IBS implementation. Findings – 18 sustainability factors are identified as critical to IBS implementation. Their interrelationships and driving forces are explored, which leads to the development of a conceptual model to map these factors for actions or potential solutions. The work provides a sound basis towards a set of decision making guidelines for sustainable IBS implementation. Originality/value – Compared with previous studies that focus on technical or economical aspects, this study extends existing knowledge on construction prefabrication by linking all aspects of sustainability issues with the design process. It also covers industry characteristics of developing countries, as represented by Malaysia’s scenarios.
Resumo:
Workflow patterns have been recognized as the theoretical basis to modeling recurring problems in workflow systems. A form of workflow patterns, known as the resource patterns, characterise the behaviour of resources in workflow systems. Despite the fact that many resource patterns have been discovered, people still preclude them from many workflow system implementations. One of reasons could be obscurityin the behaviour of and interaction between resources and a workflow management system. Thus, we provide a modelling and visualization approach for the resource patterns, enabling a resource behaviour modeller to intuitively see the specific resource patterns involved in the lifecycle of a workitem. We believe this research can be extended to benefit not only workflow modelling, but also other applications, such as model validation, human resource behaviour modelling, and workflow model visualization.
Resumo:
The suitability of Role Based Access Control (RBAC) is being challenged in dynamic environments like healthcare. In an RBAC system, a user's legitimate access may be denied if their need has not been anticipated by the security administrator at the time of policy specification. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. The heart of the challenge is the intrinsic unpredictability of users' operational needs as well as their incentives to misuse permissions. In this paper we propose a novel Budget-aware Role Based Access Control (B-RBAC) model that extends RBAC with the explicit notion of budget and cost, where users are assigned a limited budget through which they pay for the cost of permissions they need. We propose a model where the value of resources are explicitly defined and an RBAC policy is used as a reference point to discriminate the price of access permissions, as opposed to representing hard and fast rules for making access decisions. This approach has several desirable properties. It enables users to acquire unassigned permissions if they deem them necessary. However, users misuse capability is always bounded by their allocated budget and is further adjustable through the discrimination of permission prices. Finally, it provides a uniform mechanism for the detection and prevention of misuses.
Resumo:
Optimal Asset Maintenance decisions are imperative for efficient asset management. Decision Support Systems are often used to help asset managers make maintenance decisions, but high quality decision support must be based on sound decision-making principles. For long-lived assets, a successful Asset Maintenance decision-making process must effectively handle multiple time scales. For example, high-level strategic plans are normally made for periods of years, while daily operational decisions may need to be made within a space of mere minutes. When making strategic decisions, one usually has the luxury of time to explore alternatives, whereas routine operational decisions must often be made with no time for contemplation. In this paper, we present an innovative, flexible decision-making process model which distinguishes meta-level decision making, i.e., deciding how to make decisions, from the information gathering and analysis steps required to make the decisions themselves. The new model can accommodate various decision types. Three industrial case studies are given to demonstrate its applicability.
Resumo:
BACKGROUND: Effective management of chronic diseases such as prostate cancer is important. Research suggests a tendency to use self-care treatment options such as over-the-counter (OTC) complementary medications among prostate cancer patients. The current trend in patient-driven recording of health data in an online Personal Health Record (PHR) presents an opportunity to develop new data-driven approaches for improving prostate cancer patient care. However, the ability of current online solutions to share patients' data for better decision support is limited. An informatics approach may improve online sharing of self-care interventions among these patients. It can also provide better evidence to support decisions made during their self-managed care. AIMS: To identify requirements for an online system and describe a new case-based reasoning (CBR) method for improving self-care of advanced prostate cancer patients in an online PHR environment. METHOD: A non-identifying online survey was conducted to understand self-care patterns among prostate cancer patients and to identify requirements for an online information system. The pilot study was carried out between August 2010 and December 2010. A case-base of 52 patients was developed. RESULTS: The data analysis showed self-care patterns among the prostate cancer patients. Selenium (55%) was the common complementary supplement used by the patients. Paracetamol (about 45%) was the commonly used OTC by the patients. CONCLUSION: The results of this study specified requirements for an online case-based reasoning information system. The outcomes of this study are being incorporated in design of the proposed Artificial Intelligence (Al) driven patient journey browser system. A basic version of the proposed system is currently being considered for implementation.
Resumo:
The advanced programmatic risk analysis and management model (APRAM) is one of the recently developed methods that can be used for risk analysis and management purposes considering schedule, cost, and quality risks simultaneously. However, this model considers those failure risks that occur only over the design and construction phases of a project’s life cycle. While it can be sufficient for some projects for which the required cost during the operating life is much less than the budget required over the construction period, it should be modified in relation to infrastructure projects because the associated costs during the operating life cycle are significant. In this paper, a modified APRAM is proposed, which can consider potential risks that might occur over the entire life cycle of the project, including technical and managerial failure risks. Therefore, the modified model can be used as an efficient decision-support tool for construction managers in the housing industry in which various alternatives might be technically available. The modified method is demonstrated by using a real building project, and this demonstration shows that it can be employed efficiently by construction managers. The Delphi method was applied in order to figure out the failure events and their associated probabilities. The results show that although the initial cost of a cold-formed steel structural system is higher than a conventional construction system, the former’s failure cost is much lower than the latter’s
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
Most of the national Health Information Systems (HIS) in resource limited developing countries do not serve the purpose of management support and thus the service is adversely affected. While emphasising the importance of timely and accurate health information in decision making in healthcare planning, this paper explains that Health Management Information System Failure is commonly seen in developing countries as well as the developed countries. It is suggested that the possibility of applying principles of Health Informatics and the technology of Decision Support Systems should be seriously considered to improve the situation. A brief scientific explanation of the evolution of these two disciplines is included.
Resumo:
Jakarta, Indonesia’s chronic housing shortage poses multiple challenges for contemporary policy-makers. While it may be in the city’s interest to increase the availability of housing, there is limited land to do so. Market pressures, in tandem with government’s desire for housing availability, demand consideration of even marginal lands, such as those within floodplains, for development. Increasingly, planning for a flood resilient Jakarta is complicated by a number of factors, including: the city is highly urbanized and land use data is limited; flood management is technically complex, creating potential barriers to engagement for both decision-makers and the public; inherent uncertainty exists throughout modelling efforts, central to management; and risk and liability for infrastructure investments is unclear. These obstacles require localized watershed-level participatory planning to address risks of flooding where possible and reduce the likelihood that informal settlements occur in areas of extreme risk. This paper presents a preliminary scoping study for determination of an effective participatory planning method to encourage more resilient development. First, the scoping study provides background relevant to the challenges faced in planning for contemporary Jakarta. Second, the study examines the current use of decision-support tools, such as Geographic Information Systems (GIS), in planning for Jakarta. Existing capacity in the use of GIS allows for consideration of the use of an emerging method of community consultation - Multi-Criteria Decision-Making (MCDM) support systems infused with geospatial information - to aid in engagement with the public and improve decision-making outcomes. While these methods have been used in Australia to promote stakeholder engagement in urban intensification, the planned research will be an early introduction of the method to Indonesia. As a consequence of this intervention, it is expected that planning activities will result in a more resilient city, capable of engaging with disaster risk management in a more effective manner.
Resumo:
For construction stakeholders to fully embrace sustainability, its long-term benefits and associated risks need to be identified through holistic approaches. Consensus among key stakeholders is very important to the improvement of the ecological performance of industrialized building systems (IBS), a building construction method gaining momentum in Malaysia. A questionnaire survey examines the relative significance of 16 potentially important sustainability factors for IBS applications. To present possible solutions,semi-structured interviews solicit views from experienced IBS practitioners, representing the professions involved. Three most critical factors agreed by key stakeholders are material consumption, waste generation and waste disposal. Using SWOT analysis, the positive and negative aspects of these factors are investigated, with action plans formulated for IBS design practitioners. The SWOT analysis based guidelines have the potential to become part of IBS design briefing documents against which sustainability solutions are contemplated, selected and implemented. Existing knowledge on ecological performance issues is extended by considering the unique characteristics of IBS and identifying not only the benefits, but also the potential risks and challenges of pursuing sustainability. This is largely missing in previous research efforts. Findings to date focus on providing much-needed assistance to IBS designers, who are at the forefront of decision-making with a significant level of project influence. Ongoing work will be directed towards other project development phases and consider the inherent linkage between design decisions and subsequent sustainability deliverables in the project life cycle.
Resumo:
Lean strategies have been developed to eliminate or reduce manufacturing waste and thus improve operational efficiency in manufacturing processes. However, implementing lean strategies requires a large amount of resources and, in practice, manufacturers encounter difficulties in selecting appropriate lean strategies within their resource constraints. There is currently no systematic methodology available for selecting appropriate lean strategies within a manufacturer's resource constraints. In the lean transformation process, it is also critical to measure the current and desired leanness levels in order to clearly evaluate lean implementation efforts. Despite the fact that many lean strategies are utilized to reduce or eliminate manufacturing waste, little effort has been directed towards properly assessing the leanness of manufacturing organizations. In practice, a single or specific group of metrics (either qualitative or quantitative) will only partially measure the overall leanness. Existing leanness assessment methodologies do not offer a comprehensive evaluation method, integrating both quantitative and qualitative lean measures into a single quantitative value for measuring the overall leanness of an organization. This research aims to develop mathematical models and a systematic methodology for selecting appropriate lean strategies and evaluating the leanness levels in manufacturing organizations. Mathematical models were formulated and a methodology was developed for selecting appropriate lean strategies within manufacturers' limited amount of available resources to reduce their identified wastes. A leanness assessment model was developed by using the fuzzy concept to assess the leanness level and to recommend an optimum leanness value for a manufacturing organization. In the proposed leanness assessment model, both quantitative and qualitative input factors have been taken into account. Based on program developed in MATLAB and C#, a decision support tool (DST) was developed for decision makers to select lean strategies and evaluate the leanness value based on the proposed models and methodology hence sustain the lean implementation efforts. A case study was conducted to demonstrate the effectiveness of these proposed models and methodology. Case study results suggested that out of 10 wastes identified, the case organization (ABC Limited) is able to improve a maximum of six wastes from the selected workstation within their resource limitations. The selected wastes are: unnecessary motion, setup time, unnecessary transportation, inappropriate processing, work in process and raw material inventory and suggested lean strategies are: 5S, Just-In-Time, Kanban System, the Visual Management System (VMS), Cellular Manufacturing, Standard Work Process using method-time measurement (MTM), and Single Minute Exchange of Die (SMED). From the suggested lean strategies, the impact of 5S was demonstrated by measuring the leanness level of two different situations in ABC. After that, MTM was suggested as a standard work process for further improvement of the current leanness value. The initial status of the organization showed a leanness value of 0.12. By applying 5S, the leanness level significantly improved to reach 0.19 and the simulation of MTM as a standard work method shows the leanness value could be improved to 0.31. The optimum leanness value of ABC was calculated to be 0.64. These leanness values provided a quantitative indication of the impacts of improvement initiatives in terms of the overall leanness level to the case organization. Sensitivity analsysis and a t-test were also performed to validate the model proposed. This research advances the current knowledge base by developing mathematical models and methodologies to overcome lean strategy selection and leanness assessment problems. By selecting appropriate lean strategies, a manufacturer can better prioritize implementation efforts and resources to maximize the benefits of implementing lean strategies in their organization. The leanness index is used to evaluate an organization's current (before lean implementation) leanness state against the state after lean implementation and to establish benchmarking (the optimum leanness state). Hence, this research provides a continuous improvement tool for a lean manufacturing organization.
Resumo:
Objective: To understand the journey of advanced prostate cancer patients for supporting development of an innovative patient journey browser. Background: Prostate cancer is one of the common cancers in Australia. Due to the chronic nature of the disease, it is important to have effective disease management strategy and care model. Multi-disciplinary care is a well-proven approach for chronic disease management. The Multi-disciplinary team (MDT) can function more effectively if all the required information is available for the clinical decision support. The development of innovative technology relies on an accurate understanding of the advanced prostate cancer patient’s journey over a prolonged period. This need arises from the fact that advanced prostate cancer patients may follow various treatment paths and change their care providers. As a result of this, it is difficult to understand the actual sources of patient’s clinical records and their treatment patterns. The aim of the research is to understand variable sources of clinical records, treatment patterns, alternative therapies, over the counter (OTC) medications of advanced prostate cancer patients. This study provides better and holistic understanding of advanced prostate cancer journey. Methods: The study was conducted through an on-line survey developed to seek and analyse the responses from the participants. The on-line questionnaire was carefully developed through consultations with the clinical researchers at the Australian Prostate Cancer Research Centre-Queensland, prostate cancer support group representatives and health informaticians at the Australian e-Health Research Centre. The non-identifying questionnaire was distributed to the patients through prostate cancer support groups in Queensland, Australia. The pilot study was carried out between August 2010 and December 2010. Results: The research made important observations about the advanced prostate cancer journey. It showed that General Practitioner (GP) was the common source of patient’s clinical records (41%) followed by Urologist (14%) and other clinicians (14%). The data analysis also showed that selenium was the common complementary supplement (55%) used by the patients and about 48% patients did not use any OTC drugs. The most common OTC used by the patients was Paracetamol (about 45%). Conclusion: The results have provided a foundation to the architecture of the proposed technology solution. The outcomes of this study are incorporated in design of the proposed patient journey browser system. A basic version of the system is currently being used at the advanced prostate cancer MDT meetings.