232 resultados para Variational techniques
Resumo:
This chapter reviews common barriers to community engagement for Latino youth and suggests ways to move beyond those barriers by empowering them to communicate their experiences, address the challenges they face, and develop recommendations for making their community more youth-friendly. As a case study, this chapter describes a program called Youth FACE IT (Youth Fostering Active Community Engagement for Integration and Transformation)in Boulder County, Colorado. The program enables Latino youth to engage in critical dialogue and participate in a community-based initiative. The chapter concludes by explaining specific strategies that planners can use to support active community engagement and develop a future generation of planners and engaged community members that reflects emerging demographics.
Resumo:
In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbra variable order (VO) time fractional operator, which defines a consistent method for VO differentiation of physical variables. The Coimbra variable order fractional operator also can be viewed as a Caputo-type definition. Although this definition is the most appropriate definition having fundamental characteristics that are desirable for physical modeling, numerical methods for fractional partial differential equations using this definition have not yet appeared in the literature. Here an approximate scheme is first proposed. The stability, convergence and solvability of this numerical scheme are discussed via the technique of Fourier analysis. Numerical examples are provided to show that the numerical method is computationally efficient. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
The research team recognized the value of network-level Falling Weight Deflectometer (FWD) testing to evaluate the structural condition trends of flexible pavements. However, practical limitations due to the cost of testing, traffic control and safety concerns and the ability to test a large network may discourage some agencies from conducting the network-level FWD testing. For this reason, the surrogate measure of the Structural Condition Index (SCI) is suggested for use. The main purpose of the research presented in this paper is to investigate data mining strategies and to develop a prediction method of the structural condition trends for network-level applications which does not require FWD testing. The research team first evaluated the existing and historical pavement condition, distress, ride, traffic and other data attributes in the Texas Department of Transportation (TxDOT) Pavement Maintenance Information System (PMIS), applied data mining strategies to the data, discovered useful patterns and knowledge for SCI value prediction, and finally provided a reasonable measure of pavement structural condition which is correlated to the SCI. To evaluate the performance of the developed prediction approach, a case study was conducted using the SCI data calculated from the FWD data collected on flexible pavements over a 5-year period (2005 – 09) from 354 PMIS sections representing 37 pavement sections on the Texas highway system. The preliminary study results showed that the proposed approach can be used as a supportive pavement structural index in the event when FWD deflection data is not available and help pavement managers identify the timing and appropriate treatment level of preventive maintenance activities.
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. The sugarcane transport system is very complex and uses daily schedules, consisting of a set of locomotives runs, to satisfy the requirements of the mill and harvesters. The total cost of sugarcane transport operations is very high; over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. Efficient schedules for sugarcane transport can reduce the cost and limit the negative effects that this system can have on the raw sugar production system. There are several benefits to formulating the train scheduling problem as a blocking parallel-machine job shop scheduling (BPMJSS) problem, namely to prevent two trains passing in one section at the same time; to keep the train activities (operations) in sequence during each run (trip) by applying precedence constraints; to pass the trains on one section in the correct order (priorities of passing trains) by applying disjunctive constraints; and, to ease passing trains by solving rail conflicts by applying blocking constraints and Parallel Machine Scheduling. Therefore, the sugarcane rail operations are formulated as BPMJSS problem. A mixed integer programming and constraint programming approaches are used to describe the BPMJSS problem. The model is solved by the integration of constraint programming, mixed integer programming and search techniques. The optimality performance is tested by Optimization Programming Language (OPL) and CPLEX software on small and large size instances based on specific criteria. A real life problem is used to verify and validate the approach. Constructive heuristics and new metaheuristics including simulated annealing and tabu search are proposed to solve this complex and NP-hard scheduling problem and produce a more efficient scheduling system. Innovative hybrid and hyper metaheuristic techniques are developed and coded using C# language to improve the solutions quality and CPU time. Hybrid techniques depend on integrating heuristic and metaheuristic techniques consecutively, while hyper techniques are the complete integration between different metaheuristic techniques, heuristic techniques, or both.
Resumo:
The overall aim of this project was to contribute to existing knowledge regarding methods for measuring characteristics of airborne nanoparticles and controlling occupational exposure to airborne nanoparticles, and to gather data on nanoparticle emission and transport in various workplaces. The scope of this study involved investigating the characteristics and behaviour of particles arising from the operation of six nanotechnology processes, subdivided into nine processes for measurement purposes. It did not include the toxicological evaluation of the aerosol and therefore, no direct conclusion was made regarding the health effects of exposure to these particles. Our research included real-time measurement of sub, and supermicrometre particle number and mass concentration, count median diameter, and alveolar deposited surface area using condensation particle counters, an optical particle counter, DustTrak photometer, scanning mobility particle sizer, and nanoparticle surface area monitor, respectively. Off-line particle analysis included scanning and transmission electron microscopy, energy-dispersive x-ray spectrometry, and thermal optical analysis of elemental carbon. Sources of fibrous and non-fibrous particles were included.
Resumo:
The performance of techniques for evaluating multivariate volatility forecasts are not yet as well understood as their univariate counterparts. This paper aims to evaluate the efficacy of a range of traditional statistical-based methods for multivariate forecast evaluation together with methods based on underlying considerations of economic theory. It is found that a statistical-based method based on likelihood theory and an economic loss function based on portfolio variance are the most effective means of identifying optimal forecasts of conditional covariance matrices.
Resumo:
The application of nanotechnology products has increased significantly in recent years. With their broad range of applications, including electronics, food and agriculture, power and energy, scientific instruments, clothing, cosmetics, buildings, biomedical and health, etc (Catanzariti, 2008), nanomaterials are an indispensible part of human life.
Resumo:
Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.
Resumo:
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in North American males and the most common newly diagnosed cancer in men world wide. Biomarkers are widely used for both early detection and prognostic tests for cancer. The current, commonly used biomarker for CaP is serum prostate specific antigen (PSA). However, the specificity of this biomarker is low as its serum level is not only increased in CaP but also in various other diseases, with age and even body mass index. Human body fluids provide an excellent resource for the discovery of biomarkers, with the advantage over tissue/biopsy samples of their ease of access, due to the less invasive nature of collection. However, their analysis presents challenges in terms of variability and validation. Blood and urine are two human body fluids commonly used for CaP research, but their proteomic analyses are limited both by the large dynamic range of protein abundance making detection of low abundance proteins difficult and in the case of urine, by the high salt concentration. To overcome these challenges, different techniques for removal of high abundance proteins and enrichment of low abundance proteins are used. Their applications and limitations are discussed in this review. A number of innovative proteomic techniques have improved detection of biomarkers. They include two dimensional differential gel electrophoresis (2D-DIGE), quantitative mass spectrometry (MS) and functional proteomic studies, i.e., investigating the association of post translational modifications (PTMs) such as phosphorylation, glycosylation and protein degradation. The recent development of quantitative MS techniques such as stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantitation (iTRAQ) and multiple reaction monitoring (MRM) have allowed proteomic researchers to quantitatively compare data from different samples. 2D-DIGE has greatly improved the statistical power of classical 2D gel analysis by introducing an internal control. This chapter aims to review novel CaP biomarkers as well as to discuss current trends in biomarker research from two angles: the source of biomarkers (particularly human body fluids such as blood and urine), and emerging proteomic approaches for biomarker research.
Resumo:
Detailed representations of complex flow datasets are often difficult to generate using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows. We review two popular texture based techniques and their application to flow datasets sourced from active research projects. The techniques investigated were Line integral convolution (LIC) [1], and Image based flow visualisation (IBFV) [18]. We evaluated these and report on their effectiveness from a visualisation perspective. We also report on their ease of implementation and computational overheads.
Resumo:
The mining environment presents a challenging prospect for stereo vision. Our objective is to produce a stereo vision sensor suited to close-range scenes consisting mostly of rocks. This sensor should produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this application. This paper compares a number of stereo matching algorithms in terms of robustness and suitability to fast implementation. These include traditional area-based algorithms, and algorithms based on non-parametric transforms, notably the rank and census transforms. Our experimental results show that the rank and census transforms are robust with respect to radiometric distortion and introduce less computational complexity than conventional area-based matching techniques.
Resumo:
Purpose. To compare radiological records of 90 consecutive patients who underwent cemented total hip arthroplasty (THA) with or without use of the Rim Cutter to prepare the acetabulum. Methods. The acetabulum of 45 patients was prepared using the Rim Cutter, whereas the device was not used in the other 45 patients. Postoperative radiographs were evaluated using a digital templating system to measure (1) the positions of the operated hips with respect to the normal, contralateral hips (the centre of rotation of the socket, the height of the centre of rotation from the teardrop, and lateralisation of the centre of rotation from the teardrop) and (2) the uniformity and width of the cement mantle in the 3 DeLee Charnley acetabular zones, and the number of radiolucencies in these zones. Results. The study group showed improved radiological parameters and were closer to the anatomic centre of rotation both vertically (1.5 vs. 3.7 mm, p<0.001) and horizontally (1.8 vs. 4.4 mm, p<0.001) and had consistently thicker and more uniform cement mantles (p<0.001). There were 2 radiolucent lines in the control group but none in the study group. Conclusion. The Rim Cutter resulted in more accurate placement of the centre of rotation of a cemented prosthetic socket, and produced a thicker, more congruent cement mantle with fewer radiolucent lines.