154 resultados para Urban water cycle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study investigated the influence of traffic and land use parameters on metal build-up on urban road surfaces. Mathematical relationships were developed to predict metals originating from fuel combustion and vehicle wear. The analysis undertaken found that nickel and chromium originate from exhaust emissions, lead, copper and zinc from vehicle wear, cadmium from both exhaust and wear and manganese from geogenic sources. Land use does not demonstrate a clear pattern in relation to the metal build-up process, though its inherent characteristics such as traffic activities exert influence. The equation derived for fuel related metal load has high cross-validated coefficient of determination (Q2) and low Standard Error of Cross-Validation (SECV) values indicates that the model is reliable, while the equation derived for wear-related metal load has low Q2 and high SECV values suggesting its use only in preliminary investigations. Relative Prediction Error values for both equations are considered to be well within the error limits for a complex system such as an urban road surface. These equations will be beneficial for developing reliable stormwater treatment strategies in urban areas which specifically focus on mitigation of metal pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in 4 different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations in road dust differ considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of society’s major infrastructure systems are generally based on anthropogenic learnings and seldom encapsulate learning from nature. This results from a pervading attitude of superiority of human-designed systems, particularly since the Industrial Revolution. Problems created by such behaviours have previously not been thought to present a serious threat to humanity. However, many built environment professionals are now reconsidering the impact of such systems on the environment and their vulnerability to issues such as climate change. This paper presents an approach to delivering sustainable urban infrastructure that addresses 21st Century needs by emulating natural form, function and process - biomimicry – in infrastructure design. The analysis reveals the context for infrastructure change and the need for sustainable solutions, detailing the current inquiry into biomimicry informed design and highlighting potential applications from literature that demonstrate precedence for nature to inspire the design of urban infrastructure, in particular water and energy systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most urban dwelling Australians take secure and safe water supplies for granted. That is, they have an adequate quantity of water at a quality that can be used by people without harm from human and animal wastes, salinity and hardness or pollutants from agriculture and manufacturing industries. Australia wide urban and peri-urban dwellers use safe water for all domestic as well as industrial purposes. However, this is not the situation remote regions in Australia where availability and poor quality water can be a development constraint. Nor is it the case in Sri Lanka where people in rural regions are struggling to obtain a secure supply of water, irrespective of it being safe because of the impact of faecal and other contaminants. The purposes of this paper are to overview: the population and environmental health challenges arising from the lack of safe water in rural and remote communities; response pathways to address water quality issues; and the status of and need for integrated catchment management (ICM) in selected remote regions of Australia and vulnerable and lagging rural regions in Sri Lanka. Conclusions are drawn that focus on the opportunity for inter-regional collaborations between Australia and Sri Lanka for the delivery of safe water through ICM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide. Annealing at high temperatures, or exposure to strong ultraviolet light under vacuum, is employed to facilitate desorption of these gases. In this article, the molecules adsorbed on graphene nanoflakes and on chemically derived graphene-nanomesh flakes are displaced rapidly at room temperature in air by the use of gaseous polar molecules such as water and ethanol. The mechanism for desorption is proposed to arise from the electrostatic forces exerted by the polar molecules, which decouples the overlap between substrate defect states, molecule states, and graphene states near the Fermi level. Using chemiresistors prepared from water-based dispersions of single-layer graphene on mesoporous alumina membranes, the study further shows that the edges of the graphene flakes (showing p-type responses to NO2 and NH3) and the edges of graphene nanomesh structures (showing n-type responses to NO2 and NH3) have enhanced sensitivity. The measured responses towards gases are comparable to or better than those which have been obtained using devices that are more sophisticated. The higher sensitivity and rapid regeneration of the sensor at room temperature provides a clear advancement towards practical molecule detection using graphene-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic is one of the prominent sources of polycyclic aromatic hydrocarbons (PAHs) and road surfaces are the most critical platform for stormwater pollution. Build-up of pollutants on road surfaces was the focus of this research study. The study found that PAHs build-up on road surfaces primarily originate from traffic activities, specifically gasoline powered vehicles. Other sources such as diesel vehicles, industrial oil combustion and incineration were also found to contribute to the PAH build-up. Additionally, the study explored the linkages between concentrations of PAHs and traffic characteristics such as traffic volume, vehicle mix and traffic flow. While traffic congestion was found to be positively correlated with 6- ring and 5- ring PAHs in road build-up, it was negatively correlated with 3-ring and 4 ring PAHs. The absence of positive correlation between 3-ring and 4-ring PAHs and traffic parameters is attributed to the propensity of these relatively volatile PAHs to undergo re-suspension and evaporation. The outcomes of this study are expected to contribute effective transport and land use planning for the prevention of PAH pollution in the urban environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the pollutant build-up process is a key requirement for developing stormwater pollution mitigation strategies. In this context, process variability is a concept which needs to be understood in-depth. Analysis of particulate build-up on three road surfaces in an urban catchment confirmed that particles <150µm and >150µm have characteristically different build-up patterns, and these patterns are consistent over different field conditions. Three theoretical build-up patterns were developed based on the size-fractionated particulate build-up patterns, and these patterns explain the variability in particle behavior and the variation in particle-bound pollutant load and composition over the antecedent dry period. Behavioral variability of particles <150µm was found to exert the most significant influence on the build-up process variability. As characterization of process variability is particularly important in stormwater quality modeling, it is recommended that the influence of behavioral variability of particles <150µm on pollutant build-up should be specifically addressed. This would eliminate model deficiencies in the replication of the build-up process and facilitate the accounting of the inherent process uncertainty, and thereby enhance the water quality predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variability in the pollutant wash-off process is a concept which needs to be understood in-depth in order to better assess the outcomes of stormwater quality models, and thereby strengthen stormwater pollution mitigation strategies. Current knowledge about the wash-off process does not extend to a clear understanding of the influence of the initially available pollutant build-up on the variability of the pollutant wash-off load and composition. Consequently, pollutant wash-off process variability is poorly characterised in stormwater quality models, which can result in inaccurate stormwater quality predictions. Mathematical simulation of particulate wash-off from three urban road surfaces confirmed that the wash-off load of particle size fractions <150µm and >150µm after a storm event vary with the build-up of the respective particle size fractions available at the beginning of the storm event. Furthermore, pollutant load and composition associated with the initially available build-up of <150µm particles predominantly influence the variability in washed-off pollutant load and composition. The influence of the build-up of pollutants associated with >150µm particles on wash-off process variability is significant only for relatively shorter duration storm events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road deposited dust is a complex mixture of pollutants derived from a wide range of sources. Accurate identification of these sources is seminal for effective source-oriented control measures. A range of techniques such as enrichment factor analysis (EF), principal component analysis (PCA) and hierarchical cluster analysis (HCA) are available for identifying sources of complex mixtures. However, they have multiple deficiencies when applied individually. This study presents an approach for the effective utilisation of EF, PCA and HCA for source identification, so that their specific deficiencies on an individual basis are eliminated. EF analysis confirmed the non-soil origin of metals such as Na, Cu, Cd, Zn, Sn, K, Ca, Sb, Ba, Ti, Ni and Mo providing guidance in the identification of anthropogenic sources. PCA and HCA identified four sources, with soil and asphalt wear in combination being the most prominent sources. Other sources were tyre wear, brake wear and sea salt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy metals build-up on urban road surfaces is a complex process and influenced by a diverse range of factors. Although numerous research studies have been conducted in the area of heavy metals build-up, limited research has been undertaken to rank these factors in terms of their influence on the build-up process. This results in limitations in the identification of the most critical factor/s for accurately estimating heavy metal loads and for designing effective stormwater treatment measures. The research study undertook an in-depth analysis of the factors which influence heavy metals build-up based on data generated from a number of different geographical locations around the world. Traffic volume was found to be the highest ranked factor in terms of influencing heavy metals build-up while land use was ranked the second. Proximity to arterial roads, antecedent dry days and road surface roughness has a relatively lower ranking. Furthermore, the study outcomes advances the conceptual understanding of heavy metals build-up based on the finding that with increasing traffic volume, total heavy metal build-up load increases while the variability decreases. The outcomes from this research study are expected to contribute to more accurate estimation of heavy metals build-up loads leading to more effective stormwater treatment design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We treat urban stormwater as a problem as it causes flooding, transports pollutants and degrades the ecosystem health of waterways (Goonetilleke et al., 2014). Municipal authorities devote a significant component of their budget to capture and remove stormwater from urban areas as rapidly as possible. Unfortunately, it is a largely unappreciated fact that urban stormwater is the last available uncommitted water resource for our cities as the demand for potable water escalates due to growing urbanisation, industrialisation and higher living standards.