262 resultados para Transformed function
Resumo:
The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.
Resumo:
Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...
Resumo:
DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.
Resumo:
A series of improved vectors have been constructed that are suitable for use in Agrobacterium tumefaciens-mediated monocot transformation. These binary vectors have several useful features, including the selectable marker genes bar (phosphinothricin resistance) or hph (hygromycin resistance) driven by either the cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin promoter, a high-copy-number replication origin that allows reliable mini-prep DNA isolation from Escherichia coli, and a polylinker sequence into which target genes can be easily inserted. A significant improvement has been made to the hph gene by the introduction of an intron into its coding region. The presence of the intron abolishes hph expression in A. tumefaciens, rendering the bacterium susceptible to the selective agent hygromycin B. The use of such an intron-hph vector thus enables the antibiotic in plant culture media to function as both a selective agent for transformed tissue and as a contraselective agent for A. tumefaciens growth, thus minimising the overgrowth of A. tumefaciens on plant tissues during transformation. Furthermore, the intron appears to be correctly spliced in plant cells and significantly enhances hph expression in transformed rice tissue. In our experiments, the use of the intron-hph vector increased the frequency of rice transformation and has enabled the production of transgenic barley.
Resumo:
The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.
Resumo:
A very simple leaf assay is described that rapidly and reliably identifies transgenic plants expressing the hygromycin resistance gene, hph or the phosphinothricin resistance gene, bar. Leaf tips were cut from plants propagated either in the glasshouse or in tissue culture and the cut surface embedded in solid medium containing the appropriate selective agent. Non-transgenic barley or rice leaf tips had noticeable symptoms of either bleaching or necrosis after three days on the medium and were completely bleached or necrotic after one week. Transgenic leaf tips remained green and healthy over this period. This gave unambiguous discrimination between transgenic and non-transgenic plants. The leaf assay was also effective for dicot plants tested (tobacco and peas).
Resumo:
The role of the screen producer is ramifying. Not only are there numerous producer categories, but the screen producer function is also found on a continuum across film, television, advertising, corporate video, and the burgeoning digital media sector. In recent years, fundamental changes to distribution and consumption practices and technologies should have had a correlate impact on screen production practices and on the role of existing screen producers. At the same time, new and recent producers are learning and practicing their craft in a field that has already been transformed by digitisation and media convergence. Our analysis of the work, experience and outlook of screen producers in this chapter is based on data collected in the Australian Screen Producer Survey (ASPS), a nation-wide survey conducted by the ARC Centre of Excellence for Creative Industries and Innovation, the media marketing firm Bergent Research, and the Centre for Screen Business at the Australian Film, Television and Radio School (AFTRS) in 2008/09 and 2011. We analyse the results to better understand the practice of screen production in a period of industry transition, and to recognise the persistence of established production cultures that serve to distinguish different industry sectors.
Resumo:
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2) as well as Tas1r1 and Tas1r3 (comprising the umami receptor) are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and are enriched in myocytes, which we corroborated using in situ hybridization. Tas1r1 gene-targeted mice (Tas1r1Cre/Rosa26tdRFP) strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart.
Resumo:
A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.
Resumo:
X-ray diffraction structure functions for water flowing in a 1.5 mm diameter siphon in the temperature range 4 – 63 °C were obtained using a 20 keV beam at the Australian Synchrotron. These functions were compared with structure functions obtained at the Advanced Light Source for a 0.5 mm thick sample of water in the temperature range 1 – 77 °C irradiated with an 11 keV beam. The two sets of structure functions are similar, but there are subtle differences in the shape and relative position of the two functions suggesting a possible differences between the structure of bulk and siphon water. In addition, the first structural peak (Q0) for water in a siphon, showed evidence of a step-wise increase in Q0 with increasing temperature rather than a smoothly varying increase. More experiments are required to investigate this apparent difference.
Resumo:
Electronic dance music (EDM) has the capacity of producing not simply individual recordings but also a medium to create new soundtracks through live manipulation of these recordings by disc jockeys (DJs). This immediacy in dance music is in contrast with recorded rock music continuing to be presented in a static form. Research was undertaken to explore the proposition that EDM’s beat-mixing function can be implemented to create immediacy in rock music. The term used in this thesis to refer to the application of beat-mixing in rock music is ‘ClubRock’. Through collaboration between a number of disk jockeys and rock music professionals the research applied the process of beat-mixing standard rock compositions to produce a continuous rock set. DJ techniques created immediacy in the recordings and transformed static renditions into a fluid creative work.
Resumo:
RC4-Based Hash Function is a new proposed hash function based on RC4 stream cipher for ultra low power devices. In this paper, we analyse the security of the function against collision attack. It is shown that the attacker can find collision and multi-collision messages with complexity only 6 compress function operations and negligible memory with time complexity 2 13. In addition, we show the hashing algorithm can be distinguishable from a truly random sequence with probability close to one.
Resumo:
Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.