147 resultados para The Body


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patients with anorexia nervosa (AN) have low body weight, depleted fat stores, and reduced muscle mass. Both total body potassium (TBK) and bioelectrical impedance analysis (BIA) have been used to measure the body composition of these patients.1–4 Whereas TBK accurately measures body cell mass, the metabolically active compartment of the body, whole body potassium counters are expensive and not readily available. The purpose of this study was to investigate the potential of multiple frequency BIA (MFBIA) to monitor changes in body compartments in patients with AN.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To further evaluate the nature of malnutrition, define at-risk groups, and confirm the efficacy of nutritional supplementation on body composition in cystic fibrosis (CF), we have conducted longitudinal and cross-sectional studies of total body potassium (TBK) in 161 unselected CF subjects aged 1 month to 17 years. TBK was determined by measurement of40K in a whole body counter, reflecting body cell mass (BCM), the vital work-performing and growing cellular component of the body. Compared with normal TBK data for age and sex from pooled measurements of 1,629 healthy children aged 1 week to 17 years, CF infants (n = 12) diagnosed by newborn screening were depleted in TBK at diagnosis and showed catch-up with therapy by 1 year; CF children aged 2-17 years (n = 140) showed a tendency for inadequate accretion of TBK (and thus BCM) with increasing age, although the normal correlation between TBK and weight and height was maintained in the majority suggesting a pattern of nutritional stunting of growth; and malnourished CF children (n = 9) showed significant catchup in TBK with long-term nutritional rehabilitation (85-98% of TBK predicted for weight and height). These studies suggest that potentially serious, but possibly correctable deficits, in the growth of the body cell mass as measured by TBK occur commonly in CF. These deficits may be established very early in life and if not corrected lead to progressive nutritional growth retardation with increasing age. © 1989 Raven Press, Ltd., New York.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Artist statement – Artisan Gallery I have a confession to make… I don’t wear a FitBit, I don’t want an Apple Watch and I don’t like bling LED’s. But, what excites me is a future where ‘wearables’ are discreet, seamless and potentially one with our body. Burgeoning E-textiles research will provide the ability to inconspicuously communicate, measure and enhance human health and well-being. Alongside this, next generation wearables arguably will not be worn on the body, but rather within the body…under the skin. ‘Under the Skin’ is a polemic piece provoking debate on the future of wearables – a place where they are not overt, not auxiliary and perhaps not apparent. Indeed, a future where wearables are under the skin or one with our apparel. And, as underwear closets the skin and is the most intimate and cloaked apparel item we wear, this work unashamedly teases dialogue to explore how wearables can transcend from the overt to the unseen. Context Wearable Technology, also referred to as wearable computing or ‘wearables’, is an embryonic field that has the potential to unsettle conventional notions as to how technology can interact, enhance and augment the human body. Wearable technology is the next-generation for ubiquitous consumer electronics and ‘Wearables’ are, in essence, miniature electronic devices that are worn by a person, under clothing, embedded within clothing/textiles, on top of clothing, or as stand-alone accessories/devices. This wearables market is predicted to grow somewhere between $30-$50 billion in the next 5 years (Credit Suisse, 2013). The global ‘wearables’ market, which is emergent in phase, has forecasted predictions for vast consumer revenue with the potential to become a significant cross-disciplinary disruptive space for designers and entrepreneurs. For Fashion, the field of wearables is arguably at the intersection of the second and third generation for design innovation: the first phase being purely decorative with aspects such as LED lighting; the second phase consisting of an array of wearable devices, such as smart watches, to communicate areas such as health and fitness, the third phase involving smart electronics that are woven into the textile to perform a vast range of functions such as body cooling, fabric colour change or garment silhouette change; and the fourth phase where wearable devices are surgically implanted under the skin to augment, transform and enhance the human body. Whilst it is acknowledged the wearable phases are neither clear-cut nor discreet in progression and design innovation can still be achieved with first generation decorative approaches, the later generation of technology that is less overt and at times ‘under the skin’ provides a uniquely rich point for design innovation where the body and technology intersect as one. With this context in mind, the wearable provocation piece ‘Under the Skin’ provides a unique opportunity for the audience to question and challenge conventional notions that wearables need to be a: manifest in nature, b: worn on or next to the body, and c: purely functional. The piece ‘Under the Skin’ is informed by advances in the market place for wearable innovation, such as: the Australian based wearable design firm Catapult with their discreet textile biometric sports tracking innovation, French based Spinali Design with their UV app based textile senor to provide sunburn alerts, as well as opportunities for design technology innovation through UNICEF’s ‘Wearables for Good’ design challenge to improve the quality of life in disadvantaged communities. Exhibition As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction Markerless motion capture systems are relatively new devices that can significantly speed up capturing full body motion. A precision of the assessment of the finger’s position with this type of equipment was evaluated at 17.30 ± 9.56 mm when compare to an active marker system [1]. The Microsoft Kinect was proposed to standardized and enhanced clinical evaluation of patients with hemiplegic cerebral palsy [2]. Markerless motion capture systems have the potential to be used in a clinical setting for movement analysis, as well as for large cohort research. However, the precision of such system needs to be characterized. Global objectives • To assess the precision within the recording field of the markerless motion capture system Openstage 2 (Organic Motion, NY). • To compare the markerless motion capture system with an optoelectric motion capture system with active markers. Specific objectives • To assess the noise of a static body at 13 different location within the recording field of the markerless motion capture system. • To assess the smallest oscillation detected by the markerless motion capture system. • To assess the difference between both systems regarding the body joint angle measurement. Methods Equipment • OpenStage® 2 (Organic Motion, NY) o Markerless motion capture system o 16 video cameras (acquisition rate : 60Hz) o Recording zone : 4m * 5m * 2.4m (depth * width * height) o Provide position and angle of 23 different body segments • VisualeyezTM VZ4000 (PhoeniX Technologies Incorporated, BC) o Optoelectric motion capture system with active markers o 4 trackers system (total of 12 cameras) o Accuracy : 0.5~0.7mm Protocol & Analysis • Static noise: o Motion recording of an humanoid mannequin was done in 13 different locations o RMSE was calculated for each segment in each location • Smallest oscillation detected: o Small oscillations were induced to the humanoid mannequin and motion was recorded until it stopped. o Correlation between the displacement of the head recorded by both systems was measured. A corresponding magnitude was also measured. • Body joints angle: o Body motion was recorded simultaneously with both systems (left side only). o 6 participants (3 females; 32.7 ± 9.4 years old) • Tasks: Walk, Squat, Shoulder flexion & abduction, Elbow flexion, Wrist extension, Pronation / supination (not in results), Head flexion & rotation (not in results), Leg rotation (not in results), Trunk rotation (not in results) o Several body joint angles were measured with both systems. o RMSE was calculated between signals of both systems. Results Conclusion Results show that the Organic Motion markerless system has the potential to be used for assessment of clinical motor symptoms or motor performances However, the following points should be considered: • Precision of the Openstage system varied within the recording field. • Precision is not constant between limb segments. • The error seems to be higher close to the range of motion extremities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In cells, the balance of oxidation and reduction reactions (redox chemistry) plays a significant role in key biological processes such as cell signaling, cell fate determination and the body's defence systems, all of which contribute significantly to the overall well-being of the body. This project served as a step forward in developing a more efficient method to monitor mitochondrial redox status. The method is based on the application of profluorescent nitroxides (PFN) that change in fluorescent intensity based on changing mitochondrial redox status. A major impact of this project is to facilitate assessment of mitochondrial redox status and thereby determine the efficacy of antioxidant treatments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper offers a mediation on disaster, recovery, resilience, and restoration of balance, in both a material and a metaphorical sense, when ‘disaster’ befalls not the body politic of the nation but the body personal. In the past few decades, of course, artists, activists and scholars have deliberately tried to avoid describing personal, physical and phenomenological experiences of the disabled body in terms of difficulty and disaster. This has been part of a political move, from a medical model, in which disability, disease and illness are positioned as personal catastrophes, to a social model, in which disability is positioned as a social construct that comes from systems, institutions and infrastructure designed to exclude different bodies. It is a move that is responsible for a certain discomfort people with disabilities, and artists with disabilities, today feel towards performances that deploy disability as a metaphor for disaster, from Hijikata, to Theatre Hora. In the past five years, though, this particular discourse has begun rising again, particularly as people with disabilities fact their own anything but natural disasters as a result of the austerity measures now widespread across the US, UK, Europe and elsewhere. Measures that threaten people’s ability to live, and take part in social and institutional life, in any meaningful way. Measures that, as artist Katherine Araniello notes, also bring additional difficulty, danger, and potential for disaster as they ripple outwards across the tides of familial ties, threatening family, friends, and careers who become bound up in the struggle to do more with less. In this paper, I consider how people with disabilities use performance, particularly public space interventionalist performance, to reengage, renact and reenvisage the discourse of national, economic, environmental or other forms of disaster, the need for austerity, the need to avoid providing people with support for desires and interests as well as basic daily needs, particularly when fraud and corruption is so right, and other such ideas that have become an all too unpleasant reality for many people. Performances, for instance, like Liz Crow’s Bedding Out, where she invited people into her bed – for people with disabilities a symbolic space, which necessarily becomes more a public living room restaurant, office and so forth than a private space when poor mobility means they spend much time it in – to talk about their lives, their difficulties, and dealing with austerity. Or, for instance, like the Bolshy Divas, who mimic public and political policy, reports and advertising paranoia to undermine their discourses about austerity. I examine the effects, politics and ethics of such interventions, including examination of the comparative effect of highly bodied interventions (like Crow’s) and highly disembodied interventions (like the Bolshy Diva’s) in discourses of difficulty, disaster and austerity on a range of target spectator communities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Body Area Network (BAN) is an emerging technology that focuses on monitoring physiological data in, on and around the human body. BAN technology permits wearable and implanted sensors to collect vital data about the human body and transmit it to other nodes via low-energy communication. In this paper, we investigate interactions in terms of data flows between parties involved in BANs under four different scenarios targeting outdoor and indoor medical environments: hospital, home, emergency and open areas. Based on these scenarios, we identify data flow requirements between BAN elements such as sensors and control units (CUs) and parties involved in BANs such as the patient, doctors, nurses and relatives. Identified requirements are used to generate BAN data flow models. Petri Nets (PNs) are used as the formal modelling language. We check the validity of the models and compare them with the existing related work. Finally, using the models, we identify communication and security requirements based on the most common active and passive attack scenarios.