169 resultados para Stefan Behling
Resumo:
This teaching case describes how SAP, a leading global information technology (IT) solutions provider, embarked on a large-scale transformation program to implement a dual sustainability strategy of: (a) internally transforming the organization, and (b) addressing a business opportunity by developing IT solutions that enable their customers to become more sustainable. This case provides students with significant information about the development of SAP towards sustainability, including the company's underlying motivation, their approach to change and related challenges, and their use of IT to enable the transformation. The teaching case provides an opportunity to critically examine the benefits and risks of using IT in an effort to improve the sustainability of an organization, and to develop appropriate models for sustainable strategies and IT implementation efforts.
Resumo:
RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Resumo:
Scholarly research into the uses of social media has become a major area of growth in recent years, as the adoption of social media for public communication itself has continued apace. While social media platforms provide ready avenues for data access through their Application Programming interfaces, it is increasingly important to think through exactly what these data represent, and what conclusions about the role of social media in society the research which is based on such data therefore enables. This article explores these issues especially for one of the currently leading social media platforms: Twitter.
Resumo:
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs--Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs--Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.
Resumo:
Recent years have seen global food prices rise and become more volatile. Price surges in 2008 and 2011 held devastating consequences for hundreds of millions of people and negatively impacted many more. Today one billion people are hungry. The issue is a high priority for many international agencies and national governments. At the Cannes Summit in November 2011, the G20 leaders agreed to implement five objectives aiming to mitigate food price volatility and protect vulnerable persons. To succeed, the global community must now translate these high level policy objectives into practical actions. In this paper, we describe challenges and unresolved dilemmas before the global community in implementing these five objectives. The paper describes recent food price volatility trends and an evaluation of possible causes. Special attention is given to climate change and water scarcity, which have the potential to impact food prices to a much greater extent in coming decades. We conclude the world needs an improved knowledge base and new analytical capabilities, developed in parallel with the implementation of practical policy actions, to manage food price volatility and reduce hunger and malnutrition. This requires major innovations and paradigm shifts by the global community.
Resumo:
We present an approach for the inspection of vertical pole-like infrastructure using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures, such as light and power distribution poles, is a time consuming, dangerous and expensive task with high operator workload. To address these issues, we propose a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. We adopt an Image based Visual Servoing (IBVS) technique using only two line features to stabilise the vehicle with respect to a pole. Visual, inertial and sonar data are used, making the approach suitable for indoor or GPS-denied environments. Results from simulation and outdoor flight experiments demonstrate the system is able to successfully inspect and circumnavigate a pole.
Resumo:
Due to the availability of huge number of web services, finding an appropriate Web service according to the requirements of a service consumer is still a challenge. Moreover, sometimes a single web service is unable to fully satisfy the requirements of the service consumer. In such cases, combinations of multiple inter-related web services can be utilised. This paper proposes a method that first utilises a semantic kernel model to find related services and then models these related Web services as nodes of a graph. An all-pair shortest-path algorithm is applied to find the best compositions of Web services that are semantically related to the service consumer requirement. The recommendation of individual and composite Web services composition for a service request is finally made. Empirical evaluation confirms that the proposed method significantly improves the accuracy of service discovery in comparison to traditional keyword-based discovery methods.