174 resultados para Statistical Tolerance Analysis
Resumo:
Background Up-to-date evidence on levels and trends for age-sex-specific all-cause and cause-specific mortality is essential for the formation of global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013) we estimated yearly deaths for 188 countries between 1990, and 2013. We used the results to assess whether there is epidemiological convergence across countries. Methods We estimated age-sex-specific all-cause mortality using the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data. We generally estimated cause of death as in the GBD 2010. Key improvements included the addition of more recent vital registration data for 72 countries, an updated verbal autopsy literature review, two new and detailed data systems for China, and more detail for Mexico, UK, Turkey, and Russia. We improved statistical models for garbage code redistribution. We used six different modelling strategies across the 240 causes; cause of death ensemble modelling (CODEm) was the dominant strategy for causes with sufficient information. Trends for Alzheimer's disease and other dementias were informed by meta-regression of prevalence studies. For pathogen-specific causes of diarrhoea and lower respiratory infections we used a counterfactual approach. We computed two measures of convergence (inequality) across countries: the average relative difference across all pairs of countries (Gini coefficient) and the average absolute difference across countries. To summarise broad findings, we used multiple decrement life-tables to decompose probabilities of death from birth to exact age 15 years, from exact age 15 years to exact age 50 years, and from exact age 50 years to exact age 75 years, and life expectancy at birth into major causes. For all quantities reported, we computed 95% uncertainty intervals (UIs). We constrained cause-specific fractions within each age-sex-country-year group to sum to all-cause mortality based on draws from the uncertainty distributions. Findings Global life expectancy for both sexes increased from 65·3 years (UI 65·0–65·6) in 1990, to 71·5 years (UI 71·0–71·9) in 2013, while the number of deaths increased from 47·5 million (UI 46·8–48·2) to 54·9 million (UI 53·6–56·3) over the same interval. Global progress masked variation by age and sex: for children, average absolute differences between countries decreased but relative differences increased. For women aged 25–39 years and older than 75 years and for men aged 20–49 years and 65 years and older, both absolute and relative differences increased. Decomposition of global and regional life expectancy showed the prominent role of reductions in age-standardised death rates for cardiovascular diseases and cancers in high-income regions, and reductions in child deaths from diarrhoea, lower respiratory infections, and neonatal causes in low-income regions. HIV/AIDS reduced life expectancy in southern sub-Saharan Africa. For most communicable causes of death both numbers of deaths and age-standardised death rates fell whereas for most non-communicable causes, demographic shifts have increased numbers of deaths but decreased age-standardised death rates. Global deaths from injury increased by 10·7%, from 4·3 million deaths in 1990 to 4·8 million in 2013; but age-standardised rates declined over the same period by 21%. For some causes of more than 100 000 deaths per year in 2013, age-standardised death rates increased between 1990 and 2013, including HIV/AIDS, pancreatic cancer, atrial fibrillation and flutter, drug use disorders, diabetes, chronic kidney disease, and sickle-cell anaemias. Diarrhoeal diseases, lower respiratory infections, neonatal causes, and malaria are still in the top five causes of death in children younger than 5 years. The most important pathogens are rotavirus for diarrhoea and pneumococcus for lower respiratory infections. Country-specific probabilities of death over three phases of life were substantially varied between and within regions. Interpretation For most countries, the general pattern of reductions in age-sex specific mortality has been associated with a progressive shift towards a larger share of the remaining deaths caused by non-communicable disease and injuries. Assessing epidemiological convergence across countries depends on whether an absolute or relative measure of inequality is used. Nevertheless, age-standardised death rates for seven substantial causes are increasing, suggesting the potential for reversals in some countries. Important gaps exist in the empirical data for cause of death estimates for some countries; for example, no national data for India are available for the past decade.
Resumo:
Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
Abstract Background A novel avian influenza A (H7N9) virus was first found in humans in Shanghai, and infected over 433 patients in China. To date, very little is known about the spatiotemporal variability or environmental drivers of the risk of H7N9 infection. This study explored the spatial and temporal variation of H7N9 infection and assessed the effects of temperature and rainfall on H7N9 incidence. Methods A Bayesian spatial conditional autoregressive (CAR) model was used to assess the spatiotemporal distribution of the risk of H7N9 infection in Shanghai, by district and fortnight for the period 19th February–14th April 2013. Data on daily laboratory-confirmed H7N9 cases, and weather variability including temperature (°C) and rainfall (mm) were obtained from the Chinese Information System for Diseases Control and Prevention and Chinese Meteorological Data Sharing Service System, respectively, and aggregated by fortnight. Results High spatial variations in the H7N9 risk were mainly observed in the east and centre of Shanghai municipality. H7N9 incidence rate was significantly associated with fortnightly mean temperature (Relative Risk (RR): 1.54; 95% credible interval (CI): 1.22–1.94) and fortnightly mean rainfall (RR: 2.86; 95% CI: 1.47–5.56). Conclusion There was a substantial variation in the spatiotemporal distribution of H7N9 infection across different districts in Shanghai. Optimal temperature and rainfall may be one of the driving forces for H7N9.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on mathematics anxiety. Gnaldi (2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning, basic numeracy skills, mathematics background and attitudes towards statistics. This work reports on some key relationships between these factors and in particular the importance of numeracy to statistical reasoning.
Resumo:
The relationship between mathematics and statistical reasoning frequently receives comment (Vere-Jones 1995, Moore 1997); however most of the research into the area tends to focus on maths anxiety. Gnaldi (Gnaldi 2003) showed that in a statistics course for psychologists, the statistical understanding of students at the end of the course depended on students’ basic numeracy, rather than the number or level of previous mathematics courses the student had undertaken. As part of a study into the development of statistical thinking at the interface between secondary and tertiary education, students enrolled in an introductory data analysis subject were assessed regarding their statistical reasoning ability, basic numeracy skills and attitudes towards statistics. This work reports on the relationships between these factors and in particular the importance of numeracy to statistical reasoning.
Resumo:
Background: Preventing risk factor exposure is vital to reduce the high burden from lung cancer. The leading risk factor for developing lung cancer is tobacco smoking. In Australia, despite apparent success in reducing smoking prevalence, there is limited information on small area patterns and small area temporal trends. We sought to estimate spatio-temporal patterns for lung cancer risk factors using routinely collected population-based cancer data. Methods: The analysis used a Bayesian shared component spatio-temporal model, with male and female lung cancer included separately. The shared component reflected exposure to lung cancer risk factors, and was modelled over 477 statistical local areas (SLAs) and 15 years in Queensland, Australia. Analyses were also run adjusting for area-level socioeconomic disadvantage, Indigenous population composition, or remoteness. Results: Strong spatial patterns were observed in the underlying risk factor exposure for both males (median Relative Risk (RR) across SLAs compared to the Queensland average ranged from 0.48-2.00) and females (median RR range across SLAs 0.53-1.80), with high exposure observed in many remote areas. Strong temporal trends were also observed. Males showed a decrease in the underlying risk across time, while females showed an increase followed by a decrease in the final two years. These patterns were largely consistent across each SLA. The high underlying risk estimates observed among disadvantaged, remote and indigenous areas decreased after adjustment, particularly among females. Conclusion: The modelled underlying exposure appeared to reflect previous smoking prevalence, with a lag period of around 30 years, consistent with the time taken to develop lung cancer. The consistent temporal trends in lung cancer risk factors across small areas support the hypothesis that past interventions have been equally effective across the state. However, this also means that spatial inequalities have remained unaddressed, highlighting the potential for future interventions, particularly among remote areas.
Resumo:
Staphylococcus aureus (S. aureus) is a prominent human and livestock pathogen investigated widely using omic technologies. Critically, due to availability, low visibility or scattered resources, robust network and statistical contextualisation of the resulting data is generally under-represented. Here, we present novel meta-analyses of freely-accessible molecular network and gene ontology annotation information resources for S. aureus omics data interpretation. Furthermore, through the application of the gene ontology annotation resources we demonstrate their value and ability (or lack-there-of) to summarise and statistically interpret the emergent properties of gene expression and protein abundance changes using publically available data. This analysis provides simple metrics for network selection and demonstrates the availability and impact that gene ontology annotation selection can have on the contextualisation of bacterial omics data.
Resumo:
This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.
Resumo:
BACKGROUND CONTEXT: The Neck Disability Index frequently is used to measure outcomes of the neck. The statistical rigor of the Neck Disability Index has been assessed with conflicting outcomes. To date, Confirmatory Factor Analysis of the Neck Disability Index has not been reported for a suitably large population study. Because the Neck Disability Index is not a condition-specific measure of neck function, initial Confirmatory Factor Analysis should consider problematic neck patients as a homogenous group. PURPOSE: We sought to analyze the factor structure of the Neck Disability Index through Confirmatory Factor Analysis in a symptomatic, homogeneous, neck population, with respect to pooled populations and gender subgroups. STUDY DESIGN: This was a secondary analysis of pooled data. PATIENT SAMPLE: A total of 1,278 symptomatic neck patients (67.5% female, median age 41 years), 803 nonspecific and 475 with whiplash-associated disorder. OUTCOME MEASURES: The Neck Disability Index was used to measure outcomes. METHODS: We analyzed pooled baseline data from six independent studies of patients with neck problems who completed Neck Disability Index questionnaires at baseline. The Confirmatory Factor Analysis was considered in three scenarios: the full sample and separate sexes. Models were compared empirically for best fit. RESULTS: Two-factor models have good psychometric properties across both the pooled and sex subgroups. However, according to these analyses, the one-factor solution is preferable from both a statistical perspective and parsimony. The two-factor model was close to significant for the male subgroup (p<.07) where questions separated into constructs of mental function (pain, reading headaches and concentration) and physical function (personal care, lifting, work, driving, sleep, and recreation). CONCLUSIONS: The Neck Disability Index demonstrated a one-factor structure when analyzed by Confirmatory Factor Analysis in a pooled, homogenous sample of neck problem patients. However, a two-factor model did approach significance for male subjects where questions separated into constructs of mental and physical function. Further investigations in different conditions, subgroup and sex-specific populations are warranted.
Resumo:
Background Foot dorsiflexion plays an essential role in both controlling balance and human gait. Electromyography (EMG) and sonomyography (SMG) can provide information on several aspects of muscle function. The aim was to establish the relationship between the EMG and SMG variables during isotonic contractions of foot dorsiflexors. Methods Twenty-seven healthy young adults performed the foot dorsiflexion test on a device designed ad hoc. EMG variables were maximum peak and area under the curve. Muscular architecture variables were muscle thickness and pennation angle. Descriptive statistical analysis, inferential analysis and a multivariate linear regression model were carried out. The confidence level was established with a statistically significant p-value of less than 0.05. Results The correlation between EMG variables and SMG variables was r = 0.462 (p < 0.05). The linear regression model to the dependent variable “peak normalized tibialis anterior (TA)” from the independent variables “pennation angle and thickness”, was significant (p = 0.002) with an explained variance of R2 = 0.693 and SEE = 0.16. Conclusions There is a significant relationship and degree of contribution between EMG and SMG variables during isotonic contractions of the TA muscle. Our results suggest that EMG and SMG can be feasible tools for monitoring and assessment of foot dorsiflexors. TA muscle parameterization and assessment is relevant in order to know that increased strength accelerates the recovery of lower limb injuries.
Resumo:
This paper presents an uncertainty quantification study of the performance analysis of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multi-purpose Small Power Unit. A deterministic 3D volume-averaged Computational Fluid Dynamics (CFD) solver is coupled with a non-statistical generalized Polynomial Chaos (gPC) representation based on a pseudo-spectral projection method. One of the advantages of this approach is that it does not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic and geometric fields. The stochastic results highlight the importance of the blade thickness and trailing edge tip radius on the total-to-static efficiency of the turbine compared to the angular velocity and trailing edge tip length. From a theoretical point of view, the use of the gPC representation on an arbitrary grid also allows the investigation of the sensitivity of the blade thickness profiles on the turbine efficiency. The gPC approach is also applied to coupled random parameters. The results show that the most influential coupled random variables are trailing edge tip radius coupled with the angular velocity.
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.