404 resultados para Static voltage stability margin
Resumo:
The concept of an interline voltage controller (IVOLCON) to improve the power quality in a power distribution system is discussed. An IVOLCON consists of two shunt voltage source converters (VSCs) that are joined through a common dc bus. The VSCs are connected to two different feeders. The main aim of the IVOLCON is to control the PCC (Point of Common Coupling) bus voltages of the two feeders to pre-specified magnitudes. The phase angles of the PCC bus voltages are obtained such that the voltage across the common dc link remains constant. The structure, control and capability of the IVOLCON are described. The efficacy of the proposed configuration has been verified through simulation studies using PSCAD/EMTDC for voltage sags and feeder outage
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR) that protects sensitive but unbalanced and/or distorted loads. The main aim of the DVR is to regulate the voltage at the load terminal irrespective of sag/swell, distortion, or unbalance in the supply voltage. In this paper, the DVR is operated in such a fashion that it does not supply or absorb any active power during the steady-state operation. Hence, a DC capacitor rather than a DC source can supply the voltage source inverter realizing the DVR. The proposed DVR operation is verified through extensive digital computer simulation studies.
Resumo:
This paper presents a case study of a design for a complete microair vehicle thruster. Fixed-pitch small-scale rotors, brushless motors, lithium-polymer cells, and embedded control are combined to produce a mechanically simple, high-performance thruster with potentially high reliability. The custom rotor design requires a balance between manufacturing simplicity and rigidity of a blade versus its aerodynamic performance. An iterative steady-state aeroelastic simulator is used for holistic blade design. The aerodynamic load disturbances of the rotor-motor system in normal conditions are experimentally characterized. The motors require fast dynamic response for authoritative vehicle flight control. We detail a dynamic compensator that achieves satisfactory closed-loop response time. The experimental rotor-motor plant displayed satisfactory thrust performance and dynamic response.
Resumo:
Voltage Unbalance (VU) is a power quality issue arising within the low voltage residential distribution networks due to the random location and rating of single-phase rooftop photovoltaic cells (PVs). In this paper, an analysis has been carried out to investigate how PV installations, their random location and power generation capacity can cause an increase in VU. Several efficient practical methods are discussed for VU reduction. Based on this analysis, it has been shown that the installation of a DSTATCOM can reduce VU. In this paper, the best possible location for DSTATCOM and its efficient control method to reduce VU will be presented. The results are verified through PSCAD/EMTDC and Monte Carlo simulations.
Resumo:
Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A modified positive buck-boost converter topology is used to utilize the current source concept and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
Visual impairment is an important contributing factor in falls among older adults, which is one of the leading causes of injury and injury-related death in this population. Visual impairment is also associated with greater disability among older adults, including poorer health-related quality of life, increased frailty and reduced postural stability. The majority of this evidence, however, is based on measures of central visual function, rather than peripheral visual function. As such, there is comparatively limited research on the associations between peripheral visual function, disability and falls, and even fewer studies involving older adults with specific diseases which affect peripheral visual function, the most common of which is glaucoma. Glaucoma is one of the leading causes of irreversible vision loss among older adults, affecting around 3 per cent of adults aged over 60 years. The condition is characterised by retinal nerve fibre loss, primarily affecting peripheral visual function. Importantly, the number of older adults with glaucomatous visual impairment is projected to increase as the ageing population grows. The first component of the thesis examined the cross-sectional association between glaucomatous visual impairment and health-related quality of life (Study 1a), functional status (Study 1b) and postural stability (Study 1c) among older adults. A cohort of 74 community-dwelling adults with glaucoma (mean age 74.2 ± 5.9 years) was recruited and completed a baseline assessment. A number of visual function measures was assessed, including central visual function (visual acuity and contrast sensitivity), motion sensitivity, retinal nerve fibre analysis and monocular and binocular visual field measures (monocular 24-2 and binocular integrated visual fields (IVF): IVF-60 and IVF-120). The analyses focused on the associations between the outcomes measures and severity and location of visual field loss, as this is the primary visual function affected by glaucoma. In Study 1a, we examined the association between visual field loss and health-related quality of life, measured by the Short Form 36-item Health Survey (SF-36). Greater binocular visual field loss, on both IVF measures, was associated with lower SF-36 physical component scores, adjusted for age and gender (Pearson's r =|0.32| to |0.36|, p<0.001). Furthermore, inferior visual field loss was more strongly associated with the SF-36 physical component than superior field loss. No association was found between visual field loss and SF-36 mental component scores. The association between visual field loss and functional status was examined in Study 1b. Functional status outcomes measures included a physical activity questionnaire (Physical Activity Scale for the Elderly, PASE), performance tests (six-minute walk test, timed up and go test and lower leg strength) and an overall functional status score. Significant, but weak, correlations were found between binocular visual field loss and PASE and overall functional status scores, adjusted for age and gender (Pearson's r =|0.24| to |0.33|, p<0.05). Greater inferior visual field loss, independent of superior visual field loss, was significantly associated with poorer physical performance results and lower overall functional status scores. In Study 1c, we examined the association between visual field loss and postural stability, using a swaymeter device which recorded body movement during four conditions: eyes open and closed, on a firm and foam surface. Greater binocular visual field loss was associated with increased postural sway, both on firm and foam surfaces, independent of age and gender (Pearson’s r =|0.44| to |0.46|, p <0.001). Furthermore, inferior visual field was a stronger contributor to postural stability, more so than the superior visual field, particularly on the foam condition with the eyes open. Greater visual field loss was associated with a reduction in the visual contribution to postural sway, which underlies the observed association with postural sway. The second component of the thesis examined the association between severity and location of visual field loss and falls during a 12-month longitudinal follow-up. The number of falls was assessed prospectively using monthly fall calendars. Of the 71 participants who successfully completed the follow up (mean age 73.9 ± 5.7 years), 44% reported one or more falls, and around 20% reported two or more falls. After adjusting for age and gender, every 10 points missed on the IVF-120 increased the rate of falls by 25% (rate ratio 1.25, 95% confidence interval 1.08 - 1.44) or every 5dB reduction in IVF-60 increased the rate of falls by 47% (rate ratio 1.47, 95% confidence interval 1.16 - 1.87). Inferior visual field loss was a significant predictor of falls, more so than superior field loss, highlighting the importance of the inferior visual field area in safe and efficient navigation. Further analyses indicated that postural stability, more so than functional status, may be a potential mediating factor in the relationship between visual field loss and falls. Future research is required to confirm this causal pathway. In addition, the use of topical beta-blocker medications was not associated with an increased rate of falls in this cohort, compared with the use of other topical anti-glaucoma medications. In summary, greater binocular visual field loss among older adults with glaucoma was associated with poorer health-related quality of life in the physical domain, reduced functional status, greater postural instability and higher rates of falling. When the location of visual field loss was examined, inferior visual field loss was consistently more strongly associated with these outcomes than superior visual field loss. Insights gained from this research improve our understanding of the association between glaucomatous visual field loss and disability, and its link with falls among older adults. The clinical implications of this research include the need to include visual field screening in falls risk assessments among older adults and to raise awareness of these findings to eye care practitioners and adults with glaucoma. The findings also assist in developing further research to examine strategies to reduce disability and prevent falls among older adults with glaucoma to promote healthy ageing and independence for these individuals.
Resumo:
This paper is concerned with some plane strain and axially symmetric free surface problems which arise in the study of static granular solids that satisfy the Coulomb-Mohr yield condition. Such problems are inherently nonlinear, and hence difficult to attack analytically. Given a Coulomb friction condition holds on a solid boundary, it is shown that the angle a free surface is allowed to attach to the boundary is dependent only on the angle of wall friction, assuming the stresses are all continuous at the attachment point, and assuming also that the coefficient of cohesion is nonzero. As a model problem, the formation of stable cohesive arches in hoppers is considered. This undesirable phenomena is an obstacle to flow, and occurs when the hopper outlet is too small. Typically, engineers are concerned with predicting the critical outlet size for a given hopper and granular solid, so that for hoppers with outlets larger than this critical value, arching cannot occur. This is a topic of considerable practical interest, with most accepted engineering methods being conservative in nature. Here, the governing equations in two limiting cases (small cohesion and high angle of internal friction) are considered directly. No information on the critical outlet size is found; however solutions for the shape of the free boundary (the arch) are presented, for both plane and axially symmetric geometries.
Resumo:
Hydrotalcites have been synthesised using three different pH solutions to assess the effect of pH on the uptake of arsenate and vanadate. The ability of these hydrotalcites to remove vanadate and arsenate from solution has been determined by ICP-OES. Raman spectroscopy is used to monitor changes in the anionic species for hydrotalcites synthesised at different pH values. The results show a reduction in the concentration of arsenate and vanadate anions that are removed in extremely alkaline solutions. Hydrotalcites containing arsenate and vanadate are stable in solutions up to pH 10. Exposure of these hydrotalcites to higher pH values results in the removal of large percentages of arsenate and vanadate from the hydrotalcite interlayer.
Resumo:
Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.
Resumo:
Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair1. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer1. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.