534 resultados para Spatial interaction
Resumo:
This study aimed to investigate the spatial clustering and dynamic dispersion of dengue incidence in Queensland, Australia. We used Moran’s I statistic to assess the spatial autocorrelation of reported dengue cases. Spatial empirical Bayes smoothing estimates were used to display the spatial distribution of dengue in postal areas throughout Queensland. Local indicators of spatial association (LISA) maps and logistic regression models were used to identify spatial clusters and examine the spatio-temporal patterns of the spread of dengue. The results indicate that the spatial distribution of dengue was clustered during each of the three periods of 1993–1996, 1997–2000 and 2001–2004. The high-incidence clusters of dengue were primarily concentrated in the north of Queensland and low-incidence clusters occurred in the south-east of Queensland. The study concludes that the geographical range of notified dengue cases has significantly expanded in Queensland over recent years.
Resumo:
Neonate Lepidoptera are confronted with the daunting task of establishing themselves on a food plant. The factors relevant to this process need to be considered at spatial and temporal scales relevant to the larva and not the investigator. Neonates have to cope with an array of plant surface characters as well as internal characters once the integument is ruptured. These characters, as well as microclimatic conditions, vary within and between plant modules and interact with larval feeding requirements, strongly affecting movement behavior, which may be extensive even for such small organisms. In addition to these factors, there is an array of predators, pathogens, and parasitoids with which first instars must contend. Not surprisingly, mortality in neonates is high but can vary widely. Experimental and manipulative studies, as well as detailed observations of the animal, are vital if the subtle interaction of factors responsible for this high and variable mortality are to be understood. These studies are essential for an understanding of theories linking female oviposition behavior with larval survival, plant defense theory, and population dynamics, as well as modern crop resistance breeding programs.
Resumo:
Children often have difficulties in learning spatial representations. This study investigated the effect of four different instructional formats on learning outcomes and strategies used when dealing with spatial tasks such as assembly procedures. It was hypothesised that instructional material that imposed least extraneous cognitive load would facilitate enhanced learning. Forty secondary students were presented with four types of instruction; orthographic drawing, isometric drawing, physical model and, isometric and physical model together. The findings provide evidence to suggest that working from physical models caused least extraneous cognitive load compared to the isometric and orthographic groups. The model group took less time, had more correctly completed models, required fewer extra looks, spent less time studying the instruction and made fewer errors. Problem decomposition, forward working and attending to information in the foreground of the graphical representation strategies were analysed.
Resumo:
Corepressors play a crucial role in negative gene regulation and are defective in several diseases. BCoR is a corepressor for the BCL6 repressor protein. Here we describe and functionally characterize BCoR-L1, a homolog of BCoR. When tethered to a heterologous promoter, BCoR-L1 is capable of strong repression. Like other corepressors, BCoR-L1 associates with histone deacetylase (HDAC) activity. Specifically, BCoR-L1 coprecipitates with the Class II HDACs, HDAC4, HDAC5, and HDAC7, suggesting that they are involved in its role as a transcriptional repressor. BCoR-L1 also interacts with the CtBP corepressor through a CtBP-interacting motif in its amino terminus. Abrogation of the CtBP binding site within BCoR-L1 partially relieves BCoR-L1-mediated transcriptional repression. Furthermore, BCoR-L1 is located on the E-cadherin promoter, a known CtBP-regulated promoter, and represses the E-cadherin promoter activity in a reporter assay. The inhibition of BCoR-L1 expression by RNA-mediated interference results in derepression of E-cadherin in cells that do not normally express E-cadherin, indicating that BCoR-L1 contributes to the repression of an authentic endogenous CtBP target.
Resumo:
Archaeal transcription utilizes a complex multisubunit RNA polymerase and the basal transcription factors TBP and TF(II)B, closely resembling its eukaryal counterpart. We have uncovered a tight physical and functional interaction between RNA polymerase and the single-stranded DNA-binding protein SSB in Sulfolobus solfataricus. SSB stimulates transcription from promoters in vitro under TBP-limiting conditions and supports transcription in the absence of TBP. SSB also rescues transcription from repression by reconstituted chromatin. We demonstrate the potential for promoter melting by SSB, suggesting a plausible basis for the stimulation of transcription. This stimulation requires both the single-stranded DNA-binding domain and the acidic C-terminal tail of the SSB. The tail forms a stable interaction with RNA polymerase. These data reveal an unexpected role for single-stranded DNA-binding proteins in transcription in archaea.
Resumo:
This paper presents the results of testing to determine pavement forces from three heavy vehicles (HVs). The HVs were instrumented to measure their wheel forces. A “novel roughness” value of the roads during testing is also derived. The various dynamic pavement forces are presented according to the range of novel roughness of pavement surfacings encountered during testing. The paper then examines the relationship between the two derived wavelengths predominant within the HV suspensions; those of axle hop and body-bounce. How these may be considered as contributing to spatial repetition of pavement forces from HVs is discussed. The paper concludes that pavement models need to be revised since dynamic forces from HVs in particular are not generally considered in current pavement design.
Resumo:
After bone fracture, various cellular activities lead to the formation of different tissue types, which form the basis for the process of secondary bone healing. Although these tissues have been quantified by histology, their material properties are not well understood. Thus, the aim of this study is to correlate the spatial and temporal variations in the mineral content and the nanoindentation modulus of the callus formed via intramembranous ossification over the course of bone healing. Midshaft tibial samples from a sheep osteotomy model at time points of 2, 3, 6 and 9 weeks were employed. PMMA embedded blocks were used for quantitative back scattered electron imaging and nanoindentation of the newly formed periosteal callus near the cortex. The resulting indentation modulus maps show the heterogeneity in the modulus in the selected regions of the callus. The indentation modulus of the embedded callus is about 6 GPa at the early stage. At later stages of mineralization, the average indentation modulus reaches 14 GPa. There is a slight decrease in average indentation modulus in regions distant to the cortex, probably due to remodelling of the peripheral callus. The spatial and temporal distribution of mineral content in the callus tissue also illustrates the ongoing remodelling process observed from histological analysis. Most interestingly the average indentation modulus, even at 9 weeks, remains as low as 13 GPa, which is roughly 60% of that for cortical sheep bone. The decreased indentation modulus in the callus compared to cortex is due to the lower average mineral content and may be perhaps also due to the properties of the organic matrix which might be different from normal bone.
Resumo:
There has recently been an emphasis within literacy studies on both the spatial dimensions of social practices (Leander & Sheehy, 2004) and the importance of incorporating design and multiple modes of meaning-making into contemporary understandings of literacy (Cope & Kalantzis, 2000; New London Group, 1996). Kress (2003) in particular has outlined the potential implications of the cultural shift from the dominance of writing, based on a logic of time and sequence in time, to the dominance of the mode of the image, based on a logic of space. However, the widespread re-design of curriculum and pedagogy by classroom teachers to allow students to capitalise on the various affordances of different modes of meaning-making – including the spatial – remains in an emergent stage. We report on a project in which university researchers’ expertise in architecture, literacy and communications enabled two teachers in one school to expand the forms of literacy that primary school children engaged in. Starting from the school community’s concerns about an urban renewal project in their neighbourhood, we worked together to develop a curriculum of spatial literacies with real-world goals and outcomes.
Resumo:
Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.
Resumo:
On obstacle-cluttered construction sites, understanding the motion characteristics of objects is important for anticipating collisions and preventing accidents. This study investigates algorithms for object identification applications that can be used by heavy equipment operators to effectively monitor congested local environment. The proposed framework contains algorithms for three-dimensional spatial modeling and image matching that are based on 3D images scanned by a high-frame rate range sensor. The preliminary results show that an occupancy grid spatial modeling algorithm can successfully build the most pertinent spatial information, and that an image matching algorithm is best able to identify which objects are in the scanned scene.
Resumo:
Many luxury heritage brands operate on the misconception that heritage is interchangeable with history rather than representative of the emotional response they originally developed in their customer. This idea of heritage as static history inhibits innovation, prevents dynamic renewal and impedes their ability to redefine, strengthen and position their brand in current and emerging marketplaces. This paper examines a number of heritage luxury brands that have successfully identified the original emotional responses they developed in their customers and, through innovative approaches in design, marketing, branding and distribution evoke these responses in contemporary consumers. Using heritage and innovation hand-in-hand, these brands have continued to grow and develop a vision of heritage that incorporates both historical and contemporary ideas to meet emerging customer needs. While what constitutes a ‘luxury’ item is constantly challenged in this era of accessible luxury products, up-scaling and aspirational spending, this paper sees consumers’ emotional needs as the key element in defining the concept of luxury. These emotional qualities consistently remain relevant due to their ability to enhance a positive sense of identity for the brand user. Luxury is about the ‘experience’ not just the product providing the consumer with a sense of enhanced status or identity through invoked feelings of exclusivity, authenticity, quality, uniqueness and culture. This paper will analyse luxury heritage brands that have successfully combined these emotional values with those of their ‘heritage’ to create an aura of authenticity and nostalgia that appeals to contemporary consumers. Like luxury, the line where clothing becomes fashion is blurred in the contemporary fashion industry; however, consumer emotion again plays an important role. For example, clothing becomes ‘fashion’ for consumers when it affects their self perception rather than fulfilling basic functions of shelter and protection. Successful luxury heritage brands can enhance consumers’ sense of self by involving them in the ‘experience’ and ‘personality’ of the brand so they see it as a reflection of their own exclusiveness, authentic uniqueness, belonging and cultural value. Innovation is a valuable tool for heritage luxury brands to successfully generate these desired emotional responses and meet the evolving needs of contemporary consumers. While traditionally fashion has been a monologue from brand to consumer, new technology has given consumers a voice to engage brands in a conversation to express their evolving needs, ideas and feedback. As a result, in this consumer-empowered era of information sharing, this paper defines innovation as the ability of heritage luxury brands to develop new design and branding strategies in response to this consumer feedback while retaining the emotional core values of their heritage. This paper analyses how luxury heritage brands can effectively position themselves in the contemporary marketplace by separating heritage from history to incorporate innovative strategies that will appeal to consumer needs of today and tomorrow.
Resumo:
This is an invited presentation made as a short preview of the virtual environment research work being undertaken at QUT in the Business Process Management (BPM) research group, known as BPMVE. Three projects are covered, spatial process visualisation, with applications to airport check-in processes, collaborative process modelling using a virtual world BPMN editing tool and business process simulation in virtual worlds using Open Simulator and the YAWL workflow system. In addition, the relationship of this work to Organisational Psychology is briefly explored. Full Video/Audio is available at: http://www.youtube.com/user/BPMVE#p/u/1/rp506c3pPms
Resumo:
Interaction Design is a fast developing branch of Industrial Design. The availability of cheap microprocessors and sensor electronics allow interactions between people and products that were until recently impossible. This has added additional layers of complexity to the design process. Novice designers find it difficult to effectively juggle these complexities and typically tend to focus on one aspect at a time. They also tend to take a linear, step-by-step approach to the design process in contrast to expert designers who pursue “parallel lines of thought” whilst simultaneously co-evolving both problem and solution. (Lawson, 1993) This paper explores an approach that encourages designers (in this case novice designers) to take a parallel rather than linear approach to the design process. It also addresses the problem of social loafing that tends to occur in team activities.
Resumo:
In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation.
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.