275 resultados para Programme de formation
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the formation and diffusion of hydrogen vacancies on MgH2(110) surface and in bulk. We find that the formation energies for a single H-vacancy increase slightly from the surface to deep layers. The energies for creating adjacent surface divancacies at two inplane sites and at an inplane and a bridge site are even smaller than that for the formation of a single H-vacancy, a fact that is attributed to the strong vacancy−vacancy interactions. The diffusion of an H-vacancy from an in-plane site to a bridge site on the surface has the smallest activation barrier calculated at 0.15 eV and should be fast at room temperature. The activation barriers computed for H-vacancy diffusion from the surface into sublayers are all less than 0.70 eV, which is much smaller than the activation energy for desorption of hydrogen on the MgH2(110) surface (1.78−2.80 eV/H2). This suggests that surface desorption is more likely than vacancy diffusion to be rate determining, such that finding effective catalyst on the MgH2 surface to facilitate desorption will be very important for improving overall dehydrogenation performance.
Resumo:
Yates et al (1996) provided a review of the literature on educational approaches to improving psychosocial care of terminally ill patients and their families and suggested that there was an urgent need for innovation in this area. A programme of professional development currently being offered to 181 palliative care nurses in Queensland, Australia, was also described. This paper presents research in progress evaluating this programme which involves use of a quasi-experimental pre-post test design. It also includes process and outcome measures to assess effectiveness in improving the participant's ability to provide psychosocial care to patients and families. Research examining the effectiveness of various educational programmes on care of the dying has offered equivocal results (Yates et al 1996). Degner and Gow (1988a) noted that the inconsistencies found in research into death education result from inadequate study designs, variations in the conceptualisation and measurement of the outcomes of the programmes and flaws in data analysis. Such studies have often lacked a theoretical basis, few have employed well-controlled experimental designs, and the programme outcomes have generally been limited to the participant's 'death anxiety', or other death attitudes which have been variously defined and measured. Whilst Degner and Gow (1988b) have reported that undergraduate nursing students who participated in a care of the dying educational programme demonstrated more 'approach caring' behaviours than a control group, the impact of education programmes on patient care has rarely been examined. Failure to link education to nursing practice and subsequent clinical outcomes has, however, been seen as a major limitation of nursing knowledge in this area (Degner et al 1991). This paper describes an approach to researching the effectiveness of professional development programmes for palliative care nurses.
Resumo:
Identifying effective strategies for promoting learning in the clinical setting continues to pose challenges for nurse educators. The aim of the present paper is to examine the potential that peer mentorship may have in helping nursing students to improve clinical learning outcomes. An example of a peer mentorship programme for nursing students undertaking their first clinical practicum is described, and preliminary findings from an evaluation of this pilot programme are presented. The results suggest that peer mentorship may be of some benefit to students, particularly in relation to reducing anxiety and improving confidence with clinical practice experiences, and is therefore a strategy which is worthy of further investigation.
Resumo:
Despite the numerous reports of difficulties experienced by health care providers in providing psychosocial care to terminally ill patients and their families, few studies have yet been undertaken to examine the effectiveness of different educational approaches to addressing these issues. The aim of this paper is to describe a programme of professional development for palliative care nurses, which is currently being offered to 181 registered nurses in Queensland, Australia. The programme is based on an action learning model and is designed to facilitate processes of reflection and peer consultation. In Part One of this paper, a review of this literature is presented to provide the background and rationale for the programme design. Details of the research programme developed to evaluate the programme will be presented in Part Two of this paper, which is to be published in the next issue of this Journal. Surveys of health professionals suggest that the demands of working with terminally ill patients are associated with a great deal of stress (Beaton and Degner 1990, Seale 1992, Vachon 1995), and emotional burden, as they are confronted with their patients' physical and emotional suffering over extended periods of time (Ullrich and Fitzgerald 1990). Key areas of concern (Lyons 1988, Bramwell 1989, Seale 1992, Copp and Dunn 1993, Wilkinson 1995) include: * Handling questions and conversations with dying patients. * Dealing with ethical and moral issues. * Handling emotions. * Giving hope. * Providing spiritual care and bereavement support. * Confronting team communication problems.
Resumo:
In this paper we apply port-Hamiltonian theory with the bondgraph modelling approach to the problem of formation control using partial measurements of relative positions. We present a control design that drives a group of vehicles to a desired formation without requiring inter-vehicle communications or global position and velocity measurements to be available. Our generic approach is applicable to any form of relative measurement between vehicles, but we specifically consider the important cases of relative bearings and relative distances. In the case of bearings, our theory closely relates to the field of image-based visual servo (IBVS) control. We present simulation results to support the developed theory.
Resumo:
The reactions of pyrrole and thiophene monomers in copper-exchanged mordenite have been investigated using EPR and UV–VIS absorption spectroscopy. The EPR spectra show a decrease in the intensity of the Cu2+ signal and the appearance of a radical signal due to the formation of oxidatively coupled oligomeric and/or polymeric species in the zeolite host. The reaction ceases when ca. 50% of the copper has reacted and differences in the form of the residual Cu2+ signal between the thiophene and pyrrole reactions suggest a greater degree of penetration of the reaction into the zeolite host for pyrrole, in agreement with previous XPS measurements. The EPR signal intensities show that the average length of the polymer chain that is associated with each radical centre is 15–20 and 5–7 monomer units for polypyrrole and polythiophene, respectively. The widths of the EPR signals suggest that these are at least partly due to small oligomers. The UV–VIS absorption spectra of the thiophene system show bands in three main regions: 2.8–3.0 eV (A), 2.3 eV (B) and 1.6–1.9 eV (D, E, F). Bands A and D–F occur in regions which have previously been observed for small oligomers, 4–6 monomer units in length. Band B is assigned to longer chain polythiophene molecules. We therefore conclude that the reaction between thiophene and copper-loaded mordenite produces a mixture of short oligomers together with some long chain polythiophene. The UV–VIS spectra of the pyrrole system show bands in the regions 3.6 eV (A), 2.7–3.0 eV (B, C) and 1.5–1.9 eV (D, F). Assignments of these bands are less certain than for the thiophene case because of the lack of literature data on the spectra of pyrrole oligomers.
Resumo:
Objectives Early childhood caries is a highly destructive dental disease which is compounded by the need for young children to be treated under general anaesthesia. In Australia, there are long waiting periods for treatment at public hospitals. In this paper, we examined the costs and patient outcomes of a prevention programme for early childhood caries to assess its value for government services. Design Cost-effectiveness analysis using a Markov model. Setting Public dental patients in a low socioeconomic, socially disadvantaged area in the State of Queensland, Australia. Participants Children aged 6 months to 6 years received either a telephone prevention programme or usual care. Primary and secondary outcome measures A mathematical model was used to assess caries incidence and public dental treatment costs for a cohort of children. Healthcare costs, treatment probabilities and caries incidence were modelled from 6 months to 6 years of age based on trial data from mothers and their children who received either a telephone prevention programme or usual care. Sensitivity analyses were used to assess the robustness of the findings to uncertainty in the model estimates. Results By age 6 years, the telephone intervention programme had prevented an estimated 43 carious teeth and saved £69 984 in healthcare costs per 100 children. The results were sensitive to the cost of general anaesthesia (cost-savings range £36 043–£97 298) and the incidence of caries in the prevention group (cost-savings range £59 496–£83 368) and usual care (cost-savings range £46 833–£93 328), but there were cost savings in all scenarios. Conclusions A telephone intervention that aims to prevent early childhood caries is likely to generate considerable and immediate patient benefits and cost savings to the public dental health service in disadvantaged communities.
Resumo:
Objective To assess the effectiveness of an activity programme in improving function, quality of life, and falls in older people in residential care. Design Cluster randomised controlled trial with one year follow-up. Setting 41low level dependency residential carehomes in New Zealand. Participants 682 people aged 65 years or over. Interventions 330 residents were offered a goal setting and individualised activities of daily living activity programme by a gerontology nurse, reinforced by usual healthcare assistants; 352 residents received social visits. Main outcome measures Function (late life function and disability instruments, elderly mobility scale, FICSIT-4
Resumo:
Fracture healing is a complicated coupling of many processes. Yet despite the apparent complexity, fracture repair is usually effective. There is, however, no comprehensive mathematical model addressing the multiple interactions of cells, cytokines and oxygen that includes extra-cellular matrix production and that results in the formation of the early stage soft callus. This thesis develops a one dimensional continuum transport model in the context of early fracture healing. Although fracture healing is a complex interplay of many local factors, critical components are identified and used to construct an hypothesis about regulation of the evolution of early callus formation. Multiple cell lines, cellular differentiation, oxygen levels and cytokine concentrations are examined as factors affecting this model of early bone repair. The model presumes diffusive and chemotactic cell migration mechanisms. It is proposed that the initial signalling regime and oxygen availability arising as consequences of bone fracture, are sufficient to determine the quantity and quality of early soft callus formation. Readily available software and purpose written algorithms have been used to obtain numerical solutions representative of various initial conditions. These numerical distributions of cellular populations reflect available histology obtained from murine osteotomies. The behaviour of the numerical system in response to differing initial conditions can be described by alternative in vivo healing pathways. An experimental basis, as illustrated in murine fracture histology, has been utilised to validate the mathematical model outcomes. The model developed in this thesis has potential for future extension, to incorporate processes leading to woven bone deposition, while maintaining the characteristics that regulate early callus formation.
Resumo:
The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.
Resumo:
Polyaniline (PANI) thin films modified with platinum nanoparticles have been prepared by several methods, characterised and assessed in terms of electrocatalytic properties. These composite materials have been prepared by the in situ reduction of a platinum salt (K2PtCl4) by PANI, in a variety of solvents, resulting in the formation of platinum nanoparticles and clusters of different sizes. The further deposition of platinum clusters at spin cast thin films of PANI/Pt composites from a neutral aqueous solution of K2PtCl4 has also been demonstrated. Thin-film electrodes prepared from these materials have been investigated for their electrocatalytic activity by studying hydrazine oxidation and dichromate reduction. The properties of the composite materials have been determined using UV–visible spectroscopy, atomic force microscopy and transmission electron microscopy. The nature of the material formed is strongly dependent on the solvent used to dissolve PANI, the method of preparation of the PANI/Pt solution and the composition of the spin cast thin film before subsequent deposition of platinum from the aqueous solution of K2PtCl4.
Resumo:
We demonstrate a rapid synthesis of gold nanoparticles using hydroquinone as a reducing agent under acidic conditions without the need for precursor seed particles. The nanoparticle formation process is facilitated by the addition of NaOH to a solution containing HAuCl4 and hydroquinone to locally change the pH; this enhances the reducing capability of hydroquinone to form gold nucleation centres, after which further growth of gold can take place through an autocatalytic mechanism. The stability of the nanoparticles is highly dependent on the initial solution pH, and both the concentration of added NaOH and hydroquinone present in solution. The gold nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, dynamic light scattering, and zeta potential measurements. It was found that under optimal conditions that stable aqueous suspensions of 20 nm diameter nanoparticles can be achieved where benzoquinone, the oxidized product of hydroquinone, acts as a capping agent preventing nanoparticles aggregation.
Resumo:
Voltammetric techniques have been introduced to monitor the formation of gold nanoparticles produced via the reaction of the amino acid glycyl-L-tyrosine with Au(III) (bromoaurate) in 0.05 M KOH conditions. The alkaline conditions facilitate amino acid binding to Au(III), inhibit the rate of reduction to Au(0), and provide an excellent supporting electrolyte for voltammetric studies. Data obtained revealed that a range of time-dependent gold solution species are involved in gold nanoparticle formation and that the order in which reagents are mixed is critical to the outcome. Concomitantly with voltammetric measurements, the properties of gold nanoparticles formed are probed by examination of electronic spectra in order to understand how the solution environment present during nanoparticle growth affects the final distribution of the nanoparticles. Images obtained by the ex situ transmission electron microscopy (TEM) technique enable the physical properties of the nanoparticles isolated in the solid state to be assessed. Use of this combination of in situ and ex situ techniques provides a versatile framework for elucidating the details of nanoparticle formation.
Resumo:
In this work a simple approach to the creation of highly dispersed electrocatalytically active silver microstructured dendrites on indium tin oxide in the absence of any surface modification or surfactant is presented. It is found that the addition of low concentrations of supporting electrolyte to the AgNO3 solution dramatically influences the morphology of electrodeposited silver which is independent of both the anion and the cation employed. The silver dendrites are characterized by SEM, XRD, XPS as well as by cyclic voltammetry under alkaline conditions. It is found that the surface oxide formation and removal processes are significantly influenced by the microstructured morphology of the silver electrodeposits compared to a smooth macrosized silver electrode. The facile formation of dendritic silver microstructures is also shown to be beneficial for the electrocatalytic oxidation of both formaldehyde and hydrazine and oxygen reduction. The formation of a continuous film of dendritic silver is also investigated for its SERS activity where the connectivity between the individual dendrites is found to be particularly important.