533 resultados para Power optimisation
Resumo:
In this paper, a static synchronous series compensator (SSSC), along with a fixed capacitor, is used to avoid torsional mode instability in a series compensated transmission system. A 48-step harmonic neutralized inverter is used for the realization of the SSSC. The system under consideration is the IEEE first benchmark model on SSR analysis. The system stability is studied both through eigenvalue analysis and EMTDC/PSCAD simulation studies. It is shown that the combination of the SSSC and the fixed capacitor improves the synchronizing power coefficient. The presence of the fixed capacitor ensures increased damping of small signal oscillations. At higher levels of fixed capacitor compensation, a damping controller is required to stabilize the torsional modes of SSR.
Resumo:
This paper discusses the effects of thyristor controlled series compensator (TCSC), a series FACTS controller, on the transient stability of a power system. Trajectory sensitivity analysis (TSA) has been used to measure the transient stability condition of the system. The TCSC is modeled by a variable capacitor, the value of which changes with the firing angle. It is shown that TSA can be used in the design of the controller. The optimal locations of the TCSC-controller for different fault conditions can also be identified with the help of TSA. The paper depicts the advantage of the use of TCSC with a suitable controller over fixed capacitor operation.
Resumo:
Simulation study of a custom power park (CPP) is presented. It is assumed that the park contains unbalanced and nonlinear loads in addition to a sensitive load. Two different types of compensators are used separately to protect the sensitive load against unbalance and distortion caused by the other loads. It has been shown that a shunt compensator can regulate the voltage of the CPP bus, whereas the series compensator can only regulate the sensitive load terminal voltage. Additional issues such as the load transfer through a static transfer switch, detection of sag/fault etc. are also discussed. The concepts are validated through PSCAD/EMTDC simulation studies on a sample distribution system.
Resumo:
The legal power to declare war has traditionally been a part of a prerogative to be exercised solely on advice that passed from the King to the Governor-General no later than 1942. In 2003, the Governor- General was not involved in the decision by the Prime Minister and Cabinet to commit Australian troops to the invasion of Iraq. The authors explore the alternative legal means by which Australia can go to war - means the government in fact used in 2003 - and the constitutional basis of those means. While the prerogative power can be regulated and/or devolved by legislation, and just possibly by practice, there does not seem to be a sound legal basis to assert that the power has been devolved to any other person. It appears that in 2003 the Defence Minister used his legal powers under the Defence Act 1903 (Cth) (as amended in 1975) to give instructions to the service head(s). A powerful argument could be made that the relevant sections of the Defence Act were not intended to be used for the decision to go to war, and that such instructions are for peacetime or in bello decisions. If so, the power to make war remains within the prerogative to be exercised on advice. Interviews with the then Governor-General indicate that Prime Minister Howard had planned to take the matter to the Federal Executive Council 'for noting', but did not do so after the Governor-General sought the views of the then Attorney-General about relevant issues of international law. The exchange raises many issues, but those of interest concern the kinds of questions the Governor-General could and should ask about proposed international action and whether they in any way mirror the assurances that are uncontroversially required for domestic action. In 2003, the Governor-General's scrutiny was the only independent scrutiny available because the legality of the decision to go to war was not a matter that could be determined in the High Court, and the federal government had taken action in March 2002 that effectively prevented the matter coming before the International Court of Justice
Resumo:
stract This paper proposes a hybrid discontinuous control methodology for a voltage source converter (VSC), which is used in an uninterrupted power supply (UPS) application. The UPS controls the voltage at the point of common coupling (PCC). An LC filter is connected at the output of the VSC to bypass switching harmonics. With the help of both filter inductor current and filter capacitor voltage control, the voltage across the filter capacitor is controlled. Based on the voltage error, the control is switched between current and voltage control modes. In this scheme, an extra diode state is used that makes the VSC output current discontinuous. This diode state reduces the switching losses. The UPS controls the active power it supplies to a three-phase, four-wire distribution system. This gives a full flexibility to the grid to buy power from the UPS system depending on its cost and load requirement at any given time. The scheme is validated through simulation using PSCAD.
Resumo:
The concept of an interline voltage controller (IVOLCON) to improve the power quality in a power distribution system is discussed. An IVOLCON consists of two shunt voltage source converters (VSCs) that are joined through a common dc bus. The VSCs are connected to two different feeders. The main aim of the IVOLCON is to control the PCC (Point of Common Coupling) bus voltages of the two feeders to pre-specified magnitudes. The phase angles of the PCC bus voltages are obtained such that the voltage across the common dc link remains constant. The structure, control and capability of the IVOLCON are described. The efficacy of the proposed configuration has been verified through simulation studies using PSCAD/EMTDC for voltage sags and feeder outage
Resumo:
Power system stabilizers (PSS) work well at the particular network configuration and steady state conditions for which they were designed. Once conditions change, their performance degrades. This can be overcome by an intelligent nonlinear PSS based on fuzzy logic. Such a fuzzy logic power system stabilizer (FLPSS) is developed, using speed and power deviation as inputs, and provides an auxiliary signal for the excitation system of a synchronous motor in a multimachine power system environment. The FLPSS's effect on the system damping is then compared with a conventional power system stabilizer's (CPSS) effect on the system. The results demonstrate an improved system performance with the FLPSS and also that the FLPSS is robust
Resumo:
The design and implementation of a high-power (2 MW peak) vector control drive is described. The inverter switching frequency is low, resulting in high-harmonic-content current waveforms. A block diagram of the physical system is given, and each component is described in some detail. The problem of commanded slip noise sensitivity, inherent in high-power vector control drives, is discussed, and a solution is proposed. Results are given which demonstrate the successful functioning of the system
Resumo:
An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.
Resumo:
High growth in the uptake of electrical appliances is accounting for a significant increase in electricity consumption globally. In some developed countries, standby energy alone may account for about 10% of residential electricity use. The standby power for many appliances used in Australia is still well above the national goal of 1 W or less. In this paper, field measurements taken of standby power and operating power for a range of electrical appliances are presented. It was found that the difference between minimum value and maximum value of standby power could be quite large, up to 22.13 W for home theatre systems, for example. With the exception of home audio systems, however, the annual operating energy used by most electrical appliances was generally greater than the annual standby energy. Consumer behaviour and product choice can have a significant impact on standby power and operating power, which influences both energy demand and greenhouse gas emissions.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A modified positive buck-boost converter topology is used to utilize the current source concept and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies is the most substantial concern of pulsed power systems specifically with regard to plasma generation. Recently, the improvement of pulsed power supply has become of greater concern due to the extension of pulsed power applications to environmental and industrial areas. With this respect, a current source based topology is proposed in this paper as a pulsed power supply which gives the possibility of power flow control during load supplying mode. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations carried out in Matlab/SIMULINK platform as well as experimental tests on a prototype setup have verified the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.