441 resultados para PROBING DARK ENERGY
Resumo:
A zero-energy home (ZEH) is a residential dwelling that generates as much energy annually from onsite renewable sources, as it consumes in its operation. A positive energy home (PEH) generates more energy than it consumes. The key design and construction elements, and costs and benefits of such buildings, are the subject of increasing research globally. Approaching this topic from the perspective of the role of such homes in the planning and development ‘supply chain’, this paper presents the measured outcomes of a PEH and discusses urban design implications. Using twelve months of detailed performance data of an occupied sub-tropical home, the paper analyses the design approach and performance outcomes that enable it to be classified as ‘positive energy’. Second, it analyses both the urban design strategies that assisted the house in achieving its positive energy status, and the impacts of such housing on urban design and infrastructure. Third, the triple bottom line implications are discussed from the viewpoint of both the individual household and the broader community. The paper concludes with recommendations for research areas required to further underpin and quantify the role of ZEHs and PEHs in enabling and supporting the economic, social and ecological sustainability of urban developments.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
Air conditioning systems have become an integral part of many modern buildings. Proper design and operation of air conditioning systems have significant impact not only on the energy use and greenhouse gas emissions from the buildings, but also on the thermal comfort and productivity of the occupants. In this paper, the purpose and need of installing air conditioning systems is first introduced. The methods used for the classification of air conditioning systems are then presented. This is followed by a discussion on the pros and cons of each type of the air conditioning systems, including both common and new air conditioning technologies. The procedures used to design air conditioning systems are also outlined, and the implications of air conditioning systems, including design, selection, operation and maintenance, on building energy efficiency is also discussed.
Resumo:
This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Resumo:
Examines the effects of national surveillance and local right-wing intimidation on the literary works of author Eleanor Dark during the 1940s and 1950s in Australia. Reason Dark was subjected to national surveillance and right-wing intimidation; Relationship of Dark with local and national security forces; Accusations against the Dark family; Censorship faced by writers.
Resumo:
Nutrition interventions in the form of both self-management education and individualised diet therapy are considered essential for the long-term management of type 2 diabetes mellitus (T2DM). The measurement of diet is essential to inform, support and evaluate nutrition interventions in the management of T2DM. Barriers inherent within health care settings and systems limit ongoing access to personnel and resources, while traditional prospective methods of assessing diet are burdensome for the individual and often result in changes in typical intake to facilitate recording. This thesis investigated the inclusion of information and communication technologies (ICT) to overcome limitations to current approaches in the nutritional management of T2DM, in particular the development, trial and evaluation of the Nutricam dietary assessment method (NuDAM) consisting of a mobile phone photo/voice application to assess nutrient intake in a free-living environment with older adults with T2DM. Study 1: Effectiveness of an automated telephone system in promoting change in dietary intake among adults with T2DM The effectiveness of an automated telephone system, Telephone-Linked Care (TLC) Diabetes, designed to deliver self-management education was evaluated in terms of promoting dietary change in adults with T2DM and sub-optimal glycaemic control. In this secondary data analysis independent of the larger randomised controlled trial, complete data was available for 95 adults (59 male; mean age(±SD)=56.8±8.1 years; mean(±SD)BMI=34.2±7.0kg/m2). The treatment effect showed a reduction in total fat of 1.4% and saturated fat of 0.9% energy intake, body weight of 0.7 kg and waist circumference of 2.0 cm. In addition, a significant increase in the nutrition self-efficacy score of 1.3 (p<0.05) was observed in the TLC group compared to the control group. The modest trends observed in this study indicate that the TLC Diabetes system does support the adoption of positive nutrition behaviours as a result of diabetes self-management education, however caution must be applied in the interpretation of results due to the inherent limitations of the dietary assessment method used. The decision to use a close-list FFQ with known bias may have influenced the accuracy of reporting dietary intake in this instance. This study provided an example of the methodological challenges experienced with measuring changes in absolute diet using a FFQ, and reaffirmed the need for novel prospective assessment methods capable of capturing natural variance in usual intakes. Study 2: The development and trial of NuDAM recording protocol The feasibility of the Nutricam mobile phone photo/voice dietary record was evaluated in 10 adults with T2DM (6 Male; age=64.7±3.8 years; BMI=33.9±7.0 kg/m2). Intake was recorded over a 3-day period using both Nutricam and a written estimated food record (EFR). Compared to the EFR, the Nutricam device was found to be acceptable among subjects, however, energy intake was under-recorded using Nutricam (-0.6±0.8 MJ/day; p<0.05). Beverages and snacks were the items most frequently not recorded using Nutricam; however forgotten meals contributed to the greatest difference in energy intake between records. In addition, the quality of dietary data recorded using Nutricam was unacceptable for just under one-third of entries. It was concluded that an additional mechanism was necessary to complement dietary information collected via Nutricam. Modifications to the method were made to allow for clarification of Nutricam entries and probing forgotten foods during a brief phone call to the subject the following morning. The revised recording protocol was evaluated in Study 4. Study 3: The development and trial of the NuDAM analysis protocol Part A explored the effect of the type of portion size estimation aid (PSEA) on the error associated with quantifying four portions of 15 single foods items contained in photographs. Seventeen dietetic students (1 male; age=24.7±9.1 years; BMI=21.1±1.9 kg/m2) estimated all food portions on two occasions: without aids and with aids (food models or reference food photographs). Overall, the use of a PSEA significantly reduced mean (±SD) group error between estimates compared to no aid (-2.5±11.5% vs. 19.0±28.8%; p<0.05). The type of PSEA (i.e. food models vs. reference food photograph) did not have a notable effect on the group estimation error (-6.7±14.9% vs. 1.4±5.9%, respectively; p=0.321). This exploratory study provided evidence that the use of aids in general, rather than the type, was more effective in reducing estimation error. Findings guided the development of the Dietary Estimation and Assessment Tool (DEAT) for use in the analysis of the Nutricam dietary record. Part B evaluated the effect of the DEAT on the error associated with the quantification of two 3-day Nutricam dietary records in a sample of 29 dietetic students (2 males; age=23.3±5.1 years; BMI=20.6±1.9 kg/m2). Subjects were randomised into two groups: Group A and Group B. For Record 1, the use of the DEAT (Group A) resulted in a smaller error compared to estimations made without the tool (Group B) (17.7±15.8%/day vs. 34.0±22.6%/day, p=0.331; respectively). In comparison, all subjects used the DEAT to estimate Record 2, with resultant error similar between Group A and B (21.2±19.2%/day vs. 25.8±13.6%/day; p=0.377 respectively). In general, the moderate estimation error associated with quantifying food items did not translate into clinically significant differences in the nutrient profile of the Nutricam dietary records, only amorphous foods were notably over-estimated in energy content without the use of the DEAT (57kJ/day vs. 274kJ/day; p<0.001). A large proportion (89.6%) of the group found the DEAT helpful when quantifying food items contained in the Nutricam dietary records. The use of the DEAT reduced quantification error, minimising any potential effect on the estimation of energy and macronutrient intake. Study 4: Evaluation of the NuDAM The accuracy and inter-rater reliability of the NuDAM to assess energy and macronutrient intake was evaluated in a sample of 10 adults (6 males; age=61.2±6.9 years; BMI=31.0±4.5 kg/m2). Intake recorded using both the NuDAM and a weighed food record (WFR) was coded by three dietitians and compared with an objective measure of total energy expenditure (TEE) obtained using the doubly labelled water technique. At the group level, energy intake (EI) was under-reported to a similar extent using both methods, with the ratio of EI:TEE was 0.76±0.20 for the NuDAM and 0.76±0.17 for the WFR. At the individual level, four subjects reported implausible levels of energy intake using the WFR method, compared to three using the NuDAM. Overall, moderate to high correlation coefficients (r=0.57-0.85) were found across energy and macronutrients except fat (r=0.24) between the two dietary measures. High agreement was observed between dietitians for estimates of energy and macronutrient derived for both the NuDAM (ICC=0.77-0.99; p<0.001) and WFR (ICC=0.82-0.99; p<0.001). All subjects preferred using the NuDAM over the WFR to record intake and were willing to use the novel method again over longer recording periods. This research program explored two novel approaches which utilised distinct technologies to aid in the nutritional management of adults with T2DM. In particular, this thesis makes a significant contribution to the evidence base surrounding the use of PhRs through the development, trial and evaluation of a novel mobile phone photo/voice dietary record. The NuDAM is an extremely promising advancement in the nutritional management of individuals with diabetes and other chronic conditions. Future applications lie in integrating the NuDAM with other technologies to facilitate practice across the remaining stages of the nutrition care process.
Resumo:
This study evaluated the effect of eye muscle area (EMA), ossification, carcass weight, marbling and rib fat depth on the incidence of dark cutting (pH u > 5.7) using routinely collected Meat Standards Australia (MSA) data. Data was obtained from 204,072 carcasses at a Western Australian processor between 2002 and 2008. Binomial data of pH u compliance was analysed using a logit model in a Bayesian framework. Increasing eye muscle area from 40 to 80 cm 2, increased pH u compliance by around 14% (P < 0.001) in carcasses less than 350 kg. As carcass weight increased from 150 kg to 220 kg, compliance increased by 13% (P < 0.001) and younger cattle with lower ossification were also 7% more compliant (P < 0.001). As rib fat depth increased from 0 to 20 mm, pH u compliance increased by around 10% (P < 0.001) yet marbling had no effect on dark cutting. Increasing musculature and growth combined with good nutrition will minimise dark cutting beef in Australia.
Resumo:
This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.
Resumo:
Vertical vegetation is vegetation growing on, or adjacent to, the unused sunlit exterior surfaces of buildings in cities. Vertical vegetation can improve the energy efficiency of the building on which it is installed mainly by insulating, shading and transpiring moisture from foliage and substrate. Several design parameters may affect the extent of the vertical vegetation's improvement of energy performance. Examples are choice of vegetation, growing medium geometry, north/south aspect and others. The purpose of this study is to quantitatively map out the contribution of several parameters to energy savings in a subtropical setting. The method is thermal simulation based on EnergyPlus configured to reflect the special characteristics of vertical vegetation. Thermal simulation results show that yearly cooling energy savings can reach 25% with realistic design choices in subtropical environments. Heating energy savings are negligible. The most important parameter is the aspect of walls covered by vegetation. Vertical vegetation covering walls facing north (south for the northern hemisphere) will result in the highest energy savings. In making plant selections, the most significant parameter is Leaf Area Index (LAI). Plants with larger LAI, preferably LAI>4, contribute to greater savings whereas vertical vegetation with LAI<2 can actually consume energy. The choice of growing media and its thickness influence both heating and cooling energy consumption. Change of growing medium thickness from 6cm to 8cm causes dramatic increase in energy savings from 2% to 18%. For cooling, it is best to use a growing material with high water retention, due to the importance of evapotranspiration for cooling. Similarly, for increased savings in cooling energy, sufficient irrigation is required. Insufficient irrigation results in the vertical vegetation requiring more energy to cool the building. To conclude, the choice of design parameters for vertical vegetation is crucial in making sure that it contributes to energy savings rather than energy consumption. Optimal design decisions can create a dramatic sustainability enhancement for the built environment in subtropical climates.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurhsip researchers. In this vignette, Dr Rene Bakker explores "the dark side" of entrepreneurship.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.