234 resultados para MESOPOROUS SILICA FILMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric composites comprising an active phase of ferroelectric ceramic and a polymer matrix have recently attracted numerous sensory applications. However, it remains a major challenge to further improve their electromechanical response for advanced applications such as precision control and monitoring systems. We hereby investigated the incorporation of graphene platelets (GnPs) and multi-walled carbon nanotubes (MWNTs), each with various weight fractions, into PZT (lead zirconate titanate)/epoxy composites to produce three-phase nanocomposites. The nanocomposite films show markedly improved piezoelectric coefficients and electromechanical responses (50%) besides an enhancement of ~200% in stiffness. Carbon nanomaterials strengthened the impact of electric field on the PZT particles by appropriately raising the electrical conductivity of epoxy. GnPs have been proved far more promising in improving the poling behavior and dynamic response than MWNTs. The superior dynamic sensitivity of GnP-reinforced composite may be caused by GnPs’ high load transfer efficiency arising from their two-dimensional geometry and good compatibility with the matrix. Reduced acoustic impedance mismatch resulted from the improved thermal conductance may also contribute to the higher sensitivity of GnP-reinforced composite. This research pointed out the potential of employing GnPs to develop highly sensitive piezoelectric composites for sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Now is an opportune moment to consider the shifts in youth and popular culture that are signalled by texts that are being read and viewed by young people. In a world seemingly compromised by climate change, political and religious upheavals and economic irresponsibility, and at a time of fundamental social change, young people are devouring fictional texts that focus on the edges of identity, the points of transition and rupture, and the assumption of new and hybrid identities. This book draws on a range of international texts to address these issues, and to examine the ways in which key popular genres in the contemporary market for young people are being re-defined and re-positioned in the light of urgent questions about the environment, identity, one's place in the world, and the fragile nature of the world itself. The key questions are: what are the shifts and changes in youth culture that are identified by the market and by what young people read and view? How do these texts negotiate the addressing of significant questions relating to the world today? Why are these texts so popular with young people? What are the most popular genres in contemporary best-sellers and films? Do these texts have a global appeal, and, if so, why? These over-arching themes and ideas are presented as a collection of inter-related essays exploring a rich variety of forms and styles from graphic novels to urban realism, from fantasy to dystopian writing, from epic narratives to television musicals. The subjects and themes discussed here reveal the quite remarkable diversity of issues that arise in youth fiction and the variety of fictional forms in which they are explored. Once seen as not as important as adult fiction, this book clearly demonstrates that youth fiction (and the popular appeal of this fiction) is complex, durable and far-reaching in its scope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical vapor deposition (CVD) is widely utilized to synthesize graphene with controlled properties for many applications, especially when continuous films over large areas are required. Although hydrocarbons such as methane are quite efficient precursors for CVD at high temperature (∼1000 °C), finding less explosive and safer carbon sources is considered beneficial for the transition to large-scale production. In this work, we investigated the CVD growth of graphene using ethanol, which is a harmless and readily processable carbon feedstock that is expected to provide favorable kinetics. We tested a wide range of synthesis conditions (i.e., temperature, time, gas ratios), and on the basis of systematic analysis by Raman spectroscopy, we identified the optimal parameters for producing highly crystalline graphene with different numbers of layers. Our results demonstrate the importance of high temperature (1070 °C) for ethanol CVD and emphasize the significant effects that hydrogen and water vapor, coming from the thermal decomposition of ethanol, have on the crystal quality of the synthesized graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taguchi method is for the first time applied to optimize the synthesis of graphene films by copper-catalyzed decomposition of ethanol. In order to find the most appropriate experimental conditions for the realization of thin high-grade films, six experiments suitably designed and performed. The influence of temperature (1000–1070 °C) and synthesis duration (1–30 min) and hydrogen flow (0–100 sccm) on the number of graphene layers and defect density in the graphitic lattice was ranked by monitoring the intensity of the 2D- and D-bands relative to the G-band in the Raman spectra. After critical examination and adjusting of the conditions predicted to give optimal results, a continuous film consisting of 2–4 nearly defect-free graphene layers was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous titania microspheres composed of nanosheets with exposed active facets were prepared by hydrothermal synthesis in the presence of hexafluorosilicic acid. They exhibited superior catalytic activity in the solvent-free synthesis of azoxybenzene by oxidation of aniline and could be used for 7 cycles with slight loss of activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research Statement: In 2011 The State Library of Queensland in collaboration with Queensland University of Technology School of Design held a screening of six student urban films shot on location in several inner-city sites under my supervision. The films are now a permanent "exhibit" on The Edge State Library electronic site. The students were directed to explore the realist film ethos, which forms a platform for the research project, in its focus on the nonrepresentational aesthetics of the street, the unfinished and the sensory. The research demonstrates that film is a powerful instrument for the urban imaginary, for screening the city.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research Statement: In this research project film groups of 4-5 students under my direction produced a 3-5 minute urban film that explored the Brisbane Northbank, and which would become the basis for an urban proposal and design of a small film studio for independent filmmakers in the site. The theoretical premise was that a film studio does not simply produce movies, it creates urban effects all around it and acts as a vortex of cultural activity and social life. For this modest facility where the cinema goes out into the street, the city itself becomes the studio. Students were called to observe the historical problematics of technique, image and effect that arise in the cinema, and to apply these to their own urban-film practice. A panel of judges working in film and architecture shortlisted the 12 best films in 2010 and a major public film screening event took place at the Tribal Cinema. The Shortlisted films today form a permanent "exhibit" in YouTube. The research project was funded by the Queensland University of Technology, School of Design and received accolades from film faculty in the Creative Industries Faculty. The diverse body of work that emanated from the screening contributed a unique analysis of the Northbank to Brisbane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HBO's Hemingway and Gellhorn (Philip Kaufman, 2012), broadcast in May on US television and starring Nicole Kidman as the pioneering female foreign correspondent, hasn't been well reviewed by the majority of critics. Variety described the biopic (with Clive Owen as Hemingway) as “swollen and heavy-handed”, while the Huffington Post declared it an “expensive misfire … a gigantic missed opportunity, a jaw-droppingly trying waste of time”. Regardless of whether such criticisms are fair—as this essay went to press I had been unable to see the film, so I cannot judge one way or the other—Hemingway and Gellhorn should be viewed as a significant addition to the filmography of journalism, retrieving from history as it does the achievements of one of the most significant of the early female practitioners. Gellhorn was a pioneer in a patriarchal press universe, a foreign and war correspondent at a time when this branch of the profession was seen very much as man's work. She covered the Spanish Civil War and the Second World War, and with just as much viscerality as any man.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building on and bringing up to date the material presented in the first installment of Directory of World Cinema : Australia and New Zealand, this volume continues the exploration of the cinema produced in Australia and New Zealand since the beginning of the twentieth century. Among the additions to this volume are in-depth treatments of the locations that feature prominently in the countries' cinema. Essays by leading critics and film scholars consider the significance in films of the outback and the beach, which is evoked as a liminal space in Long Weekend and a symbol of death in Heaven's Burning, among other films. Other contributions turn the spotlight on previously unexplored genres and key filmmakers, including Jane Campion, Rolf de Heer, Charles Chauvel, and Gillian Armstrong.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different amounts of Ru were implanted into thermally evaporated WO3 thin films by ion implantation. The films were subsequently annealed at 600oC for 2 hours in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at%. The un-implanted WO3 films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman spectroscopy two peaks at 408 and 451 cm-1 (in addition to the typical vibrational peaks of the monoclinic WO3 phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-Ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d5/2 at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO2 and NO with higher sensor response to NO2. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO3 films with sufficient film porosity and film thickness can be beneficial for NO2 sensing at temperatures in the range of 250°C to 350°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films