260 resultados para KALMAN FILTERING
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
Social tags are an important information source in Web 2.0. They can be used to describe users’ topic preferences as well as the content of items to make personalized recommendations. However, since tags are arbitrary words given by users, they contain a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise brings difficulties to improve the accuracy of item recommendations. To eliminate the noise of tags, in this paper we propose to use the multiple relationships among users, items and tags to find the semantic meaning of each tag for each user individually. With the proposed approach, the relevant tags of each item and the tag preferences of each user are determined. In addition, the user and item-based collaborative filtering combined with the content filtering approach are explored. The effectiveness of the proposed approaches is demonstrated in the experiments conducted on real world datasets collected from Amazon.com and citeULike website.
Resumo:
Social tags in web 2.0 are becoming another important information source to describe the content of items as well as to profile users’ topic preferences. However, as arbitrary words given by users, tags contains a lot of noise such as tag synonym and semantic ambiguity a large number personal tags that only used by one user, which brings challenges to effectively use tags to make item recommendations. To solve these problems, this paper proposes to use a set of related tags along with their weights to represent semantic meaning of each tag for each user individually. A hybrid recommendation generation approaches that based on the weighted tags are proposed. We have conducted experiments using the real world dataset obtained from Amazon.com. The experimental results show that the proposed approaches outperform the other state of the art approaches.
Resumo:
Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance.
Resumo:
Relevance Feedback (RF) has been proven very effective for improving retrieval accuracy. Adaptive information filtering (AIF) technology has benefited from the improvements achieved in all the tasks involved over the last decades. A difficult problem in AIF has been how to update the system with new feedback efficiently and effectively. In current feedback methods, the updating processes focus on updating system parameters. In this paper, we developed a new approach, the Adaptive Relevance Features Discovery (ARFD). It automatically updates the system's knowledge based on a sliding window over positive and negative feedback to solve a nonmonotonic problem efficiently. Some of the new training documents will be selected using the knowledge that the system currently obtained. Then, specific features will be extracted from selected training documents. Different methods have been used to merge and revise the weights of features in a vector space. The new model is designed for Relevance Features Discovery (RFD), a pattern mining based approach, which uses negative relevance feedback to improve the quality of extracted features from positive feedback. Learning algorithms are also proposed to implement this approach on Reuters Corpus Volume 1 and TREC topics. Experiments show that the proposed approach can work efficiently and achieves the encouragement performance.
Resumo:
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.
Resumo:
This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Using local consistency assumption, the practical stability established is in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Significantly, these practical stability results do not require the approximating model to be of the same model type as the true system. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
Dealing with product yield and quality in manufacturing industries is getting more difficult due to the increasing volume and complexity of data and quicker time to market expectations. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large databases. Growing self-organizing map (GSOM) is established as an efficient unsupervised datamining algorithm. In this study some modifications to the original GSOM are proposed for manufacturing yield improvement by clustering. These modifications include introduction of a clustering quality measure to evaluate the performance of the programme in separating good and faulty products and a filtering index to reduce noise from the dataset. Results show that the proposed method is able to effectively differentiate good and faulty products. It will help engineers construct the knowledge base to predict product quality automatically from collected data and provide insights for yield improvement.
Resumo:
Purpose: The purpose of this paper is to identify changes in bank lending criteria due to the GFC and to explore the associated impacts on new housing supply in Queensland, Australia. Design/methodology/approach: This research involves a survey of each of Australia’s big four banks, as well as two prominent arrangers of development finance. Data on key lending criteria was collected: Pre GFC, during the GFC, and GFC recovery stage. Findings: The GFC has resulted in a retraction of funds available for residential development. The few institutions lending are filtering out only the best credit risks by way of constrictive loan covenants including: low loan to value ratios, high cash equity requirements, regional “no go” zones, and demonstrated borrower track record. The ability of developers to proceed with new housing developments is being constrained by their inability to obtain sufficient finance. Research limitations/implications: This research uses survey data, together with an understanding of the project finance process to extrapolate impacts on the residential development industry across Queensland. No regional or sub-market analysis is included. Future research will include subsequent surveys to track any loosening of credit policies over time and sub-market sector analysis. Practical implications: The inability to obtain project finance is identified as a key constraint to new housing supply. This research will inform policy makers and provide important quantitative evidence of the importance of availability of development finance in the housing supply chain. Social implications: Queensland is facing a supply shortfall, which if not corrected, may lead to upward pressure on house prices and falling housing affordability. Originality/value: There is very little academic research on development funding. This research is unique in linking bank lending criteria to new housing supply and demonstrating the impact on the development industry.
Resumo:
We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.
Resumo:
Introduction: An observer, looking sideways from a moving vehicle, while wearing a neutral density filter over one eye, can have a distorted perception of speed, known as the Enright phenomenon. The purpose of this study was to determine how the Enright phenomenon influences driving behaviour. Methods: A geometric model of the Enright phenomenon was developed. Ten young, visually normal, participants (mean age = 25.4 years) were tested on a straight section of a closed driving circuit and instructed to look out of the right side of the vehicle and drive at either 40 Km/h or 60 Km/h under the following binocular viewing conditions: with a 0.9 ND filter over the left eye (leading eye); 0.9 ND filter over the right eye (trailing eye); 0.9 ND filters over both eyes, and with no filters over either eye. The order of filter conditions was randomised and the speed driven recorded for each condition. Results: Speed judgments did not differ significantly between the two baseline conditions (no filters and both eyes filtered) for either speed tested. For the baseline conditions, when subjects were asked to drive at 60 Km/h they matched this speed well (61 ± 10.2 Km/h) but drove significantly faster than requested (51.6 ± 9.4 Km/h) when asked to drive at 40 Km/h. Subjects significantly exceeded baseline speeds by 8.7± 5.0 Km/h, when the trailing eye was filtered and travelled slower than baseline speeds by 3.7± 4.6 Km/h when the leading eye was filtered. Conclusions: This is the first quantitative study demonstrating how the Enright effect can influence perceptions of driving speed, and demonstrates that monocular filtering of an eye can significantly impact driving speeds, albeit to a lesser extent than predicted by geometric models of the phenomenon.