144 resultados para Intracellular Domain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the motion of a diffusive population on a growing domain, 0 < x < L(t ), which is motivated by various applications in developmental biology. Individuals in the diffusing population, which could represent molecules or cells in a developmental scenario, undergo two different kinds of motion: (i) undirected movement, characterized by a diffusion coefficient, D, and (ii) directed movement, associated with the underlying domain growth. For a general class of problems with a reflecting boundary at x = 0, and an absorbing boundary at x = L(t ), we provide an exact solution to the partial differential equation describing the evolution of the population density function, C(x,t ). Using this solution, we derive an exact expression for the survival probability, S(t ), and an accurate approximation for the long-time limit, S = limt→∞ S(t ). Unlike traditional analyses on a nongrowing domain, where S ≡ 0, we show that domain growth leads to a very different situation where S can be positive. The theoretical tools developed and validated in this study allow us to distinguish between situations where the diffusive population reaches the moving boundary at x = L(t ) from other situations where the diffusive population never reaches the moving boundary at x = L(t ). Making this distinction is relevant to certain applications in developmental biology, such as the development of the enteric nervous system (ENS). All theoretical predictions are verified by implementing a discrete stochastic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0domain. Comparing our exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opsonin-independent phagocytosis of Group B Streptococcus (GBS) is important in defense against neonatal GBS infections. A recent study indicated a role for GBS pilus in macrophage phagocytosis (Maisey et al Faseb J 22 2008 1715-24). We studied 163 isolates from different phylogenetic backgrounds and those possessing or lacking the gene encoding the pilus backbone protein, Spb1 (SAN1518, PI-2b) and spb1-deficient mutants of wild-type (WT) serotype III-3 GBS 874391 in non-opsonic phagocytosis assays using J774A.1 macrophages. Numbers of GBS phagocytosed differed up to 23-fold depending on phylogenetic background; isolates possessing spb1 were phagocytosed more than isolates lacking spb1. Comparing WT GBS and isogenic spb1-deficient mutants showed WT was phagocytosed better compared to mutants; Spb1 also enhanced intracellular survival as mutants were killed more efficiently. Complementation of mutants restored phagocytosis and resistance to killing in J774A.1 macrophages. Spb1 antiserum revealed surface expression in WT GBS and spatial distribution relative to capsular polysaccharide. spb1 did not affect macrophage nitric oxide and TNF-alpha responses; differences in phagocytosis did not correlate with N-acetyl d-glucosamine (from GBS cell-wall) according to enzyme-linked lectin-sorbent assay. Together, these findings support a role for phylogenetic lineage and Spb1 in opsonin-independent phagocytosis and intracellular survival of GBS in J774A.1 macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.