165 resultados para Finite Operator
Resumo:
Accurate modelling of automotive occupant posture is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The thigh-buttock surface shell model was based on 95th percentile male subject scan data and made of two layers, covering thin to moderate thigh and buttock proportions. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour. The analytical seat model is based on a Ford production seat. The result of the finite-element indentation simulation is compared to a previous simulation of an indentation with a hard shell human model of equal geometry, and to the physical indentation result. We conclude that SAE composite buttock form and human-seat indentation of a suspended seat cushion can be validly simulated.
Resumo:
In this thesis a new approach for solving a certain class of anomalous diffusion equations was developed. The theory and algorithms arising from this work will pave the way for more efficient and more accurate solutions of these equations, with applications to science, health and industry. The method of finite volumes was applied to discretise the spatial derivatives, and this was shown to outperform existing methods in several key respects. The stability and convergence of the new method were rigorously established.
Resumo:
The autonomous capabilities in collaborative unmanned aircraft systems are growing rapidly. Without appropriate transparency, the effectiveness of the future multiple Unmanned Aerial Vehicle (UAV) management paradigm will be significantly limited by the human agent’s cognitive abilities; where the operator’s CognitiveWorkload (CW) and Situation Awareness (SA) will present as disproportionate. This proposes a challenge in evaluating the impact of robot autonomous capability feedback, allowing the human agent greater transparency into the robot’s autonomous status - in a supervisory role. This paper presents; the motivation, aim, related works, experiment theory, methodology, results and discussions, and the future work succeeding this preliminary study. The results in this paper illustrates that, with a greater transparency of a UAV’s autonomous capability, an overall improvement in the subjects’ cognitive abilities was evident, that is, with a confidence of 95%, the test subjects’ mean CW was demonstrated to have a statistically significant reduction, while their mean SA was demonstrated to have a significant increase.
Resumo:
In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.
Resumo:
In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.
Resumo:
The present study deals with two dimensional, numerical simulation of railway track supporting system subjected to dynamic excitation force. Under plane strain condition, the coupled finite-infinite elements to represent the near and far field stress distribution and thin layer interface element was employed to model the interfacial behavior between sleepers and ballast. To account for the relative debonding, slipping and crushing that could take place in the contact area between the sleepers and ballast, modified Mohr-Coulomb criterion was adopted. Furthermore an attempt has been made to consider the elasto-plastic material non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and supporting materials. Based on the proposed physical and constitutive modeling a code has been developed for dynamic loads. The applicability of the developed F.E code has been demonstrated by analyzing a real railway supporting structure.
Resumo:
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Resumo:
This thesis is concerned with two-dimensional free surface flows past semi-infinite surface-piercing bodies in a fluid of finite-depth. Throughout the study, it is assumed that the fluid in question is incompressible, and that the effects of viscosity and surface tension are negligible. The problems considered are physically important, since they can be used to model the flow of water near the bow or stern of a wide, blunt ship. Alternatively, the solutions can be interpreted as describing the flow into, or out of, a horizontal slot. In the past, all research conducted on this topic has been dedicated to the situation where the flow is irrotational. The results from such studies are extended here, by allowing the fluid to have constant vorticity throughout the flow domain. In addition, new results for irrotational flow are also presented. When studying the flow of a fluid past a surface-piercing body, it is important to stipulate in advance the nature of the free surface as it intersects the body. Three different possibilities are considered in this thesis. In the first of these possibilities, it is assumed that the free surface rises up and meets the body at a stagnation point. For this configuration, the nonlinear problem is solved numerically with the use of a boundary integral method in the physical plane. Here the semi-infinite body is assumed to be rectangular in shape, with a rounded corner. Supercritical solutions which satisfy the radiation condition are found for various values of the Froude number and the dimensionless vorticity. Subcritical solutions are also found; however these solutions violate the radiation condition and are characterised by a train of waves upstream. In the limit that the height of the body above the horizontal bottom vanishes, the flow approaches that due to a submerged line sink in a $90^\circ$ corner. This limiting problem is also examined as a special case. The second configuration considered in this thesis involves the free surface attaching smoothly to the front face of the rectangular shaped body. For this configuration, nonlinear solutions are computed using a similar numerical scheme to that used in the stagnant attachment case. It is found that these solution exist for all supercritical Froude numbers. The related problem of the cusp-like flow due to a submerged sink in a corner is also considered. Finally, the flow of a fluid emerging from beneath a semi-infinite flat plate is examined. Here the free surface is assumed to detach from the trailing edge of the plate horizontally. A linear problem is formulated under the assumption that the elevation of the plate is close to the undisturbed free surface level. This problem is solved exactly using the Wiener-Hopf technique, and subcritical solutions are found which are characterised by a train of sinusoidal waves in the far field. The nonlinear problem is also considered. Exact relations between certain parameters for supercritical flow are derived using conservation of mass and momentum arguments, and these are confirmed numerically. Nonlinear subcritical solutions are computed, and the results are compared to those predicted by the linear theory.
Resumo:
This paper deals with a finite element modelling method for thin layer mortared masonry systems. In this method, the mortar layers including the interfaces are represented using a zero thickness interface element and the masonry units are modelled using an elasto-plastic, damaging solid element. The interface element is formulated using two regimes; i) shear-tension and ii) shearcompression. In the shear-tension regime, the failure of joint is consiedered through an eliptical failure criteria and in shear-compression it is considered through Mohr Coulomb type failure criterion. An explicit integration scheme is used in an implicit finite element framework for the formulation of the interface element. The model is calibrated with an experimental dataset from thin layer mortared masonry prism subjected to uniaxial compression, a triplet subjected to shear loads a beam subjected to flexural loads and used to predict the response of thin layer mortared masonry wallettes under orthotropic loading. The model is found to simulate the behaviour of a thin layer mortated masonry shear wall tested under pre-compression and inplane shear quite adequately. The model is shown to reproduce the failure of masonry panels under uniform biaxial state of stresses.
Resumo:
Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.
Resumo:
INTRODUCTION Adolescent idiopathic scoliosis (AIS) is a spinal deformity, which may require surgical correction by attaching rods to the patient’s spine using screws inserted into the vertebrae. Complication rates for deformity correction surgery are unacceptably high. Determining an achievable correction without overloading the adjacent spinal tissues or implants requires an understanding of the mechanical interaction between these components. Our novel patient specific modelling software creates individualized finite element models (FEM) representing the thoracolumbar spine and ribcage of scoliosis patients. We have recently applied the model to investigate the influence of increasing magnitudes of surgically applied corrective force on predicted deformity correction...
Resumo:
Many physical processes appear to exhibit fractional order behavior that may vary with time and/or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider a new space–time variable fractional order advection–dispersion equation on a finite domain. The equation is obtained from the standard advection–dispersion equation by replacing the first-order time derivative by Coimbra’s variable fractional derivative of order α(x)∈(0,1]α(x)∈(0,1], and the first-order and second-order space derivatives by the Riemann–Liouville derivatives of order γ(x,t)∈(0,1]γ(x,t)∈(0,1] and β(x,t)∈(1,2]β(x,t)∈(1,2], respectively. We propose an implicit Euler approximation for the equation and investigate the stability and convergence of the approximation. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.