482 resultados para Extraction de structure
Resumo:
Background The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. Results In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. Conclusion A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Investigates the use of temporal lip information, in conjunction with speech information, for robust, text-dependent speaker identification. We propose that significant speaker-dependent information can be obtained from moving lips, enabling speaker recognition systems to be highly robust in the presence of noise. The fusion structure for the audio and visual information is based around the use of multi-stream hidden Markov models (MSHMM), with audio and visual features forming two independent data streams. Recent work with multi-modal MSHMMs has been performed successfully for the task of speech recognition. The use of temporal lip information for speaker identification has been performed previously (T.J. Wark et al., 1998), however this has been restricted to output fusion via single-stream HMMs. We present an extension to this previous work, and show that a MSHMM is a valid structure for multi-modal speaker identification
Resumo:
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Cu2+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in a different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.
Resumo:
The Giant Long-Armed Prawn, Macrobrachium lar is a freshwater species native to the Indo-Pacific. M. lar has a long-lived, passive, pelagic marine larval stage where larvae need to colonise freshwater within three months to complete their development. Dispersal is likely to be influenced by the extensive distances larvae must transit between small oceanic islands to find suitable freshwater habitat, and by prevailing east to west wind and ocean currents in the southern Pacific Ocean. Thus, both intrinsic and extrinsic factors are likely to influence wild population structure in this species. The present study sought to define the contemporary broad and fine-scale population genetic structure of Macrobrachium lar in the south-western Pacific Ocean. Three polymorphic microsatellite loci were used to assess patterns of genetic variation within and among 19 wild adult sample sites. Statistical procedures that partition variation implied that at both spatial scales, essentially all variation was present within sample sites and differentiation among sites was low. Any differentiation observed also was not correlated with geographical distance. Statistical approaches that measure genetic distance, at the broad-scale, showed that all south-western Pacific Islands were essentially homogeneous, with the exception of a well supported divergent Cook Islands group. These findings are likely the result of some combination of factors that may include the potential for allelic homoplasy, through to the effects of sampling regime. Based on the findings, there is most likely a divergent M. lar Cook Islands clade in the south-western Pacific Ocean, resulting from prevailing ocean currents. Confirmation of this pattern will require a more detailed analysis of nDNA variation using a larger number of loci and, where possible, use of larger population sizes.
Resumo:
Diabetes is an increasingly prevalent disease worldwide. Providing early management of the complications can prevent morbidity and mortality in this population. Peripheral neuropathy, a significant complication of diabetes, is the major cause of foot ulceration and amputation in diabetes. Delay in attending to complication of the disease contributes to significant medical expenses for diabetic patients and the community. Early structural changes to the neural components of the retina have been demonstrated to occur prior to the clinically visible retinal vasculature complication of diabetic retinopathy. Additionally visual functionloss has been shown to exist before the ophthalmoscopic manifestations of vasculature damage. The purpose of this thesis was to evaluate the relationship between diabetic peripheral neuropathy and both retinal structure and visual function. The key question was whether diabetic peripheral neuropathy is the potential underlying factor responsible for retinal anatomical change and visual functional loss in people with diabetes. This study was conducted on a cohort with type 2 diabetes. Retinal nerve fibre layer thickness was assessed by means of Optical Coherence Tomography (OCT). Visual function was assessed using two different methods; Standard Automated Perimetry (SAP) and flicker perimetry were performed within the central 30 degrees of fixation. The level of diabetic peripheral neuropathy (DPN) was assessed using two techniques - Quantitative Sensory Testing and Neuropathy Disability Score (NDS). These techniques are known to be capable of detecting DPN at very early stages. NDS has also been shown as a gold standard for detecting 'risk of foot ulceration'. Findings reported in this thesis showed that RNFL thickness, particularly in the inferior quadrant, has a significant association with severity of DPN when the condition has been assessed using NDS. More specifically it was observed that inferior RNFL thickness has the ability to differentiate individuals who are at higher risk of foot ulceration from those who are at lower risk, indicating that RNFL thickness can predict late-staged DPN. Investigating the association between RNFL and QST did not show any meaningful interaction, which indicates that RNFL thickness for this cohort was not as predictive of neuropathy status as NDS. In both of these studies, control participants did not have different results from the type 2 cohort who did not DPN suggesting that RNFL thickness is not a marker for diagnosing DPN at early stages. The latter finding also indicated that diabetes per se, is unlikely to affect the RNFL thickness. Visual function as measured by SAP and flicker perimetry was found to be associated with severity of peripheral neuropathy as measured by NDS. These findings were also capable of differentiating individuals at higher risk of foot ulceration; however, visual function also proved not to be a maker for early diagnosis of DPN. It was found that neither SAP, nor flicker sensitivity have meaningful associations with DPN when neuropathy status was measured using QST. Importantly diabetic retinopathy did not explain any of the findings in these experiments. The work described here is valuable as no other research to date has investigated the association between diabetic peripheral neuropathy and either retinal structure or visual function.
Resumo:
Sarmientite is an environmental mineral; its formation in soils enables the entrapment and immobilisation of arsenic. The mineral sarmientite is often amorphous making the application of X-ray diffraction difficult. Vibrational spectroscopy has been applied to the study of sarmientite. Bands are attributed to the vibrational units of arsenate, sulphate, hydroxyl and water. Raman bands at 794, 814 and 831 cm−1 are assigned to the ν3 (AsO4)3− antisymmetric stretching modes and the ν1 symmetric stretching mode is observed at 891 cm−1. Raman bands at 1003 and 1106 cm−1 are attributed to vibrations. The Raman band at 484 cm−1 is assigned to the triply degenerate (AsO4)3− bending vibration. The high intensity Raman band observed at 355 cm−1 (both lower and upper) is considered to be due to the (AsO4)3−ν2 bending vibration. Bands attributed to water and OH stretching vibrations are observed.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
Boundaries are an important field of study because they mediate almost every aspect of organizational life. They are becoming increasingly more important as organizations change more frequently and yet, despite the endemic use of the boundary metaphor in common organizational parlance, they are poorly understood. Organizational boundaries are under-theorized and researchers in related fields often simply assume their existence, without defining them. The literature on organizational boundaries is fragmented with no unifying theoretical basis. As a result, when it is recognized that an organizational boundary is "dysfunctional". there is little recourse to models on which to base remediating action. This research sets out to develop just such a theoretical model and is guided by the general question: "What is the nature of organizational boundaries?" It is argued that organizational boundaries can be conceptualised through elements of both social structure and of social process. Elements of structure include objects, coupling, properties and identity. Social processes include objectification, identification, interaction and emergence. All of these elements are integrated by a core category, or basic social process, called boundary weaving. An organizational boundary is a complex system of objects and emergent properties that are woven together by people as they interact together, objectifying the world around them, identifying with these objects and creating couplings of varying strength and polarity as well as their own fragmented identity. Organizational boundaries are characterised by the multiplicity of interconnections, a particular domain of objects, varying levels of embodiment and patterns of interaction. The theory developed in this research emerged from an exploratory, qualitative research design employing grounded theory methodology. The field data was collected from the training headquarters of the New Zealand Army using semi-structured interviews and follow up observations. The unit of analysis is an organizational boundary. Only one research context was used because of the richness and multiplicity of organizational boundaries that were present. The model arose, grounded in the data collected, through a process of theoretical memoing and constant comparative analysis. Academic literature was used as a source of data to aid theory development and the saturation of some central categories. The final theory is classified as middle range, being substantive rather than formal, and is generalizable across medium to large organizations in low-context societies. The main limitation of the research arose from the breadth of the research with multiple lines of inquiry spanning several academic disciplines, with some relevant areas such as the role of identity and complexity being addressed at a necessarily high level. The organizational boundary theory developed by this research replaces the typology approaches, typical of previous theory on organizational boundaries and reconceptualises the nature of groups in organizations as well as the role of "boundary spanners". It also has implications for any theory that relies on the concept of boundaries, such as general systems theory. The main contribution of this research is the development of a holistic model of organizational boundaries including an explanation of the multiplicity of boundaries . no organization has a single definable boundary. A significant aspect of this contribution is the integration of aspects of complexity theory and identity theory to explain the emergence of higher-order properties of organizational boundaries and of organizational identity. The core category of "boundary weaving". is a powerful new metaphor that significantly reconceptualises the way organizational boundaries may be understood in organizations. It invokes secondary metaphors such as the weaving of an organization's "boundary fabric". and provides managers with other metaphorical perspectives, such as the management of boundary friction, boundary tension, boundary permeability and boundary stability. Opportunities for future research reside in formalising and testing the theory as well as developing analytical tools that would enable managers in organizations to apply the theory in practice.