175 resultados para ENDOGENOUS HISTAMINE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cohort of 59 persons with industrial handling of low levels of acrylonitrile is being studied as part of a medical surveillance programme. Previously, an extended haemoglobin adduct monitoring (N-(cyanoethyl)valine and N-(hydroxyethyl)-valine) was performed regarding the glutathione transferases hGSTM1 and hGSTT1 polymorphisms but no influence of hGSTM1 or hGSTT1 polymorphisms on specific adduct levels was found. A compilation of case reports of human accidental poisonings had pointed to significant individual differences in human acrylonitrile metabolism and toxicity. Therefore, a re-evaluation of the industrial cohort included known polymorphisms of the glutathione transferases hGSTM3 and hGSTP1 as well as of the cytochrome P450 CYP2E1. A detailed statistical analysis revealed that exposed carriers of the allelic variants of hGSTP1, hGSTP1*B/hGSTP1*C, characterized by a single nucleotide polymorphism at nucleotide 313 which results in a change from Ile to Val at codon 104, had higher levels of the acrylonitrile-specific haemoglobin adduct N-(cyanoethyl)valine compared to the carriers of the codon 113 alleles hGSTP1*A and hGSTP1*D. The single nucleotide polymorphism at codon 113 of hGSTP1 (hGSTP1*A/hGSTP1*B versus hGSTP1*C/hGSTP1*D) did not show an effect, and also no influence was seen on specific haemoglobin adduct levels of the polymorphisms of hGSTM3 or CYP2E1. The data, therefore, point to a possible influence of a human enzyme polymorphism of the GSTP1 gene at codon 104 on the detoxication of acrylonitrile which calls for experimental toxicological investigation. The study also confirmed the impact of GSTT1 polymorphism on background N-(hydroxyethyl)-valine adduct levels in haemoglobin which are caused by endogenous ethylene oxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term inhalation studies in rodents have presented unequivocal evidence of experimental carcinogenicity of ethylene oxide, based on the formation of malignant tumors at multiple sites. However, despite a considerable body of epidemiological data only limited evidence has been obtained of its carcinogenicity in humans. Ethylene oxide is not only an important exogenous toxicant, but it is also formed from ethylene as a biological precursor. Ethylene is a normal body constituent; its endogenous formation is evidenced by exhalation in rats and in humans. Consequently, ethylene oxide must also be regarded as a physiological compound. The most abundant DNA adduct of ethylene oxide is 7-(2-hydroxyethyl)guanine (HOEtG). Open questions are the nature and role of tissue-specific factors in ethylene oxide carcinogenesis and the physiological and quantitative role of DNA repair mechanisms. The detection of remarkable individual differences in the susceptibility of humans has promoted research into genetic factors that influence the metabolism of ethylene oxide. With this background it appears that current PBPK models for trans-species extrapolation of ethylene oxide toxicity need to be refined further. For a cancer risk assessment at low levels of DNA damage, exposure-related adducts must be discussed in relation to background DNA damage as well as to inter- and intraindividual variability. In rats, subacute ethylene oxide exposures on the order of 1 ppm (1.83 mg/m3) cause DNA adduct levels (HOEtG) of the same magnitude as produced by endogenous ethylene oxide. Based on very recent studies the endogenous background levels of HOEtG in DNA of humans are comparable to those that are produced in rodents by repetitive exogenous ethylene oxide exposures of about 10 ppm (18.3 mg/m3). Experimentally, ethylene oxide has revealed only weak mutagenic effects in vivo, which are confined to higher doses. It has been concluded that long-term human occupational exposure to low airborne concentrations to ethylene oxide, at or below current occupational exposure limits of 1 ppm (1.83 mg/m3), would not produce unacceptable increased genotoxic risks. However, critical questions remain that need further discussions relating to the coherence of animal and human data of experimental data in vitro vs. in vivo and to species-specific dynamics of DNA lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble endoglin is an anti-angiogenic protein that is released from the placenta and contributes to both maternal endothelial dysfunction and the clinical features of severe preeclampsia. The mechanism through which soluble endoglin is released from the placenta is currently unknown; however, recent work in colorectal cancer identified matrix metalloproteinase 14 (MMP-14) as the cleavage protease of endoglin. To determine whether this is also the mechanism responsible for soluble endoglin release in preeclampsia, we investigated the expression of MMP-14 within the placenta and the effects of its inhibition on soluble endoglin release. Placentas were obtained from severe, early onset preeclamptic pregnancies (n = 8) and gestationally matched preterm controls (n = 8). MMP-14 was predominately localized to the syncytiotrophoblast. Results from a proximity ligation assay showed protein interactions between endogenous MMP-14 and endoglin within the preeclamptic placenta. To demonstrate that this interaction produces soluble endoglin, we treated trophoblastic BeWo cells with either a broad-spectrum MMP inhibitor (GM6001) or MMP-14 siRNA. Both treatments produced a decrease in soluble endoglin (P ≤ 0.05). Treatment of mice bearing BeWo xenografts with GM6001 decreased circulating soluble endoglin levels in mouse serum (P ≤ 0.05). These findings indicate that MMP-14 is the likely cleavage protease of endoglin in the setting of preeclampsia. This approach provides a novel method for the development of potential therapeutics to reduce circulating soluble endoglin and ameliorate the clinical features of severe preeclampsia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Caveolin-1 (cav1) is reported to have both cell survival and pro-apoptotic characteristics. This may be explained by its localisation or phosphorylation in injured cells. This study investigated the role of cav1 in kidney cells of different nephron origin and developmental state after oxidative stress. Methods: Renal MCDK distal tubular, HK2 proximal tubular epithelial cells and HEK293T renal embryonic cells were treated with 1mM hydrogen peroxide. Apoptosis, loss of cell adhesion, and cell survival were compared with expression of cav1 in its non-phosphorylated and phosphorylated (p-cav1) forms. Cav1 was transfected into the HEK293T cells, or caveolae were disrupted with filipin or nystatin in HK2 cells, to investigate functions of cav1 and p-cav1. Results: Oxidative stress induced more apoptosis in HK2s than MDCKs (p<0.05). HK2s had lower endogenous cav1 and p-cav1 than MDCKs (p<0.05). Both cell lines had increased p-cav1, but not cav1, with oxidative stress. This increase was greatest in MDCKs (p<0.01). Cav1 was located mainly in the plasma membrane of untreated cells and translocated to the cytoplasm with oxidative stress in both cell lines, more so in MDCKs. Disruption of caveolae caused cytoplasmic translocation of cav1 in HK2s, but did not alter high levels of oxidative stress-induced apoptosis. When HEK293Ts lacking endogenous cav1 were transfected with cav1, oxidant-induced apoptosis and loss of cell adhesion was decreased (p<0.01), and p-cav1 was induced by treatment. Conclusion: Cav1 expression and localisation in kidney cells is not anti-apoptotic, but increased expression of p-cav1 may promote cell survival after oxidative stress. © 2008 Royal College of Pathologists of Australasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming γH2AX, is an early response to DNA double-strand breaks1. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)2. Overall, DSB induction results in the formation of discrete nuclear γH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy2. Given the unique specificity and sensitivity of this marker, analysis of γH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of γH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, γH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer3. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of γH2AX foci ex vivo and in vivo4,5. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of γH2AX foci in mouse tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the relationship between mitochondrial biogenesis, cell signalling and antioxidant enzymes by depleting skeletal muscle glutathione with diethyl maleate (DEM) which resulted in a demonstrable increase in oxidative stress during exercise. Animals were divided into six groups: (1) sedentary control rats; (2) sedentary rats treated with DEM; (3) exercise control rats euthanized immediately after exercise; (4) exercise rats + DEM; (5) exercise control rats euthanized 4 h after exercise, and; (6) exercise rats + DEM euthanized 4 h after exercise. Exercising animals ran on the treadmill at a 10% gradient at 20 m/min for the first 30 min. The speed was then increased every 10 min by 1.6 m/min until exhaustion. There was a reduction in total glutathione in the skeletal muscle of DEM treated animals compared to the control animals (P<0.05). Within the control group, total glutathione was higher in the sedentary group compared to after exercise (P<0.05). DEM treatment also significantly increased oxidative stress, as measured by increased plasma F2-isoprostanes (P<0.05). Exercising animals given DEM showed a significantly greater increase in peroxisome proliferator activated receptor γ coactivator-1α(PGC-1α) mRNA compared to the control animals that were exercised (P<0.05). This study provides novel evidence that by reducing the endogenous antioxidant glutathione in skeletal muscle and inducing oxidative stress through exercise, PGC-1α gene expression was augmented. These findings further highlight the important role of exercise induced oxidative stress in the regulation of mitochondrial biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In tephritid fruit flies of the genus Bactrocera Macquart, a group of plant derived compounds (sensu amplo ‘male lures') enhance the mating success of males that have consumed them. For flies responding to the male lure methyl eugenol, this is due to the accumulation of chemicals derived from the male lure in the male rectal gland (site of pheromone synthesis) and the subsequent release of an attractive pheromone. Cuelure, raspberry ketone and zingerone are a second, related group of male lures to which many Bactrocera species respond. Raspberry ketone and cuelure are both known to accumulate in the rectal gland of males as raspberry ketone, but it is not known if the emitted male pheromone is subsequently altered in complexity or is more attractive to females. Using Bactrocera tryoni as our test insect, and cuelure and zingerone as our test chemicals, we assess: (i) lure accumulation in the rectal gland; (ii) if the lures are released exclusively in association with the male pheromone; and (iii) if the pheromone of lure-fed males is more attractive to females than the pheromone of lure-unfed males. As previously documented, we found cuelure was stored in its hydroxyl form of raspberry ketone, while zingerone was stored largely in an unaltered state. Small but consistent amounts of raspberry ketone and β-(4-hydroxy-3-methoxyphenyl)-propionic acid were also detected in zingerone-fed flies. Males released the ingested lures or their analogues, along with endogenous pheromone chemicals, only during the dusk courtship period. More females responded to squashed rectal glands extracted from flies fed on cuelure than to glands from control flies, while more females responded to the pheromone of calling cuelure-fed males than to control males. The response to zingerone treatments in both cases was not different from the control. The results show that male B. tryoni release ingested lures as part of their pheromone blend and, at least for cuelure, this attracts more females.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterococcus faecalis is a Gram-positive, coccus shaped, lactic acid bacterium, with demonstrated ubiquity across multiple anatomical sites. Enterococcus faecalis isolates have been isolated from clinical samples as the etiological agent in patients with overt infections, and from body sites previously thought to be sterile but absent of signs and symptoms of infection. E. faecalis is implicated in both human health and disease, recognized as a commensal, a probiotic and an opportunistic multiply resistant pathogen. E. faecalis has emerged as a key pathogen in nosocomial infections. E. faecalis is well equipped to avert recognition by host cell immune mediators. Antigenic cell wall components including lipotechoic acids are concealed from immune detection by capsular polysaccharides produced by some strains. Thereby preventing complement activation, the pro-inflammatory response, opsonisation and phagocytosis. E. faecalis also produces a suite of enzymes including gelatinase and cytolysin, which aid in both virulence and host immune evasion. The ability of enterococci to form biofilms in vivo further increases virulence, whilst simultaneously preventing detection by host cells. E. faecalis exhibits high levels of both intrinsic and acquired antimicrobial resistance. The mobility of the E. faecalis genome is a significant contributor to antimicrobial resistance, with this species also transferring resistance to other Gram-positive bacteria. Whilst E. faecalis is of increasing concern in nosocomial infections, its role as a member of the endogenous microbiota cannot be underestimated. As a commensal and probiotic, E. faecalis plays an integral role in modulating the immune response, and in providing endogenous antimicrobial activity to enhance exclusion or inhibition of opportunistic pathogens in certain anatomical niches. In this chapter we will review possible mediators of enterococcal transition from commensal microbe to opportunistic pathogen, considering isolates obtained from patients diagnosed with pathogenic infections and those obtained from asymptomatic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reported homocysteine (HCY) concentrations in human serum show poor concordance amongst laboratories due to endogenous HCY in the matrices used for assay calibrators and QCs. Hence, we have developed a fully validated LC–MS/MS method for measurement of HCY concentrations in human serum samples that addresses this issue by minimising matrix effects. We used small volumes (20 μL) of 2% Bovine Serum Albumin (BSA) as surrogate matrix for making calibrators and QCs with concentrations adjusted for the endogenous HCY concentration in the surrogate matrix using the method of standard additions. To aliquots (20 μL) of human serum samples, calibrators or QCs, were added HCY-d4 (internal standard) and tris-(2-carboxyethyl) phosphine hydrochloride (TCEP) as reducing agent. After protein precipitation, diluted supernatants were injected into the LC–MS/MS. Calibration curves were linear; QCs were accurate (5.6% deviation from nominal), precise (CV% ≤ 9.6%), stable for four freeze–thaw cycles, and when stored at room temperature for 5 h or at −80 °C (27 days). Recoveries from QCs in surrogate matrix or pooled human serum were 91.9 and 95.9%, respectively. There was no matrix effect using 6 different individual serum samples including one that was haemolysed. Our LC–MS/MS method has satisfied all of the validation criteria of the 2012 EMA guideline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. Methods The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Results Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. Conclusions In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post traumatic stress disorder (PTSD) is a serious medical condition effecting both military and civilian populations. While its etiology remains poorly understood it is characterized by high and prolonged levels of fear responding. One biological unknown is whether individuals expressing high or low conditioned fear memory encode the memory differently and if that difference underlies fear response. In this study we examined cellular mechanisms that underlie high and low conditioned fear behavior by using an advanced intercrossed mouse line (B6D2F1) selected for high and low Pavlovian fear response. A known requirement for consolidation of fear memory, phosphorylated mitogen activated protein kinase (p44/42 (ERK) MAPK (pMAPK)) in the lateral amygdala (LA) is a reliable marker of fear learning-related plasticity. In this study, we asked whether high and low conditioned fear behavior is associated with differential pMAPK expression in the LA and if so, is it due to an increase in neurons expressing pMAPK or increased pMAPK per neuron. To examine this, we quantified pMAPK-expressing neurons in the LA at baseline and following Pavlovian fear conditioning. Results indicate that high fear phenotype mice have more pMAPK-expressing neurons in the LA. This finding suggests that increased endogenous plasticity in the LA may be a component of higher conditioned fear responses and begins to explain at the cellular level how different fear responders encode fear memories. Understanding how high and low fear responders encode fear memory will help identify novel ways in which fear-related illness risk can be better predicted and treated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The vasodilator effects of adenosine receptor agonists, isoprenaline and histamine were examined in perfused heart preparations from young (4–6 weeks) and mature (12–20 weeks) rats. 2. Adenosine induced a biphasic concentration-dependent decrease in KCl (35 mM) raised coronary perfusion pressure in hearts from young and mature rats, suggesting the presence of both high- and low-affinity sites for adenosine receptors in the two age groups tested. In heart preparations from mature rats, vasodilator responses to adenosine were significantly reduced compared with responses observed in young rats. 3. Responses to 5′-N-ethylcarboxamidoadenosine (NECA) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) were reduced in preparations from mature rats, whereas the vasodilator actions of N6-cyclopentyladenosine (CPA) and N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not change with age. 4. The results presented in this study suggest that several adenosine receptor subtypes mediate vasodilator responses in the coronary circulation of the rat and that a reduction in response to adenosine with age may be due to changes in the high-affinity receptor site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenous adenosine causes a monophasic dilation of the coronary vessels in paced, perfused rat heart preparations. Because levels of endogenous adenosine in paced hearts may mask the presence of high potency adenosine receptors, we have developed a method to measure coronary vascular responses in a potassium-arrested heart. Hearts from adult male, Wistar rats were perfused at a constant flow rate of 10 mL/min in the nonrecirculating, Langendorff mode, using Krebs-Henseleit buffer. After 30 min, coronary perfusion pressure was 44 +/- 1 mmHg (mean +/- SEM). Hearts were then perfused with a modified Krebs-Henseleit buffer containing 35 mM potassium. Coronary perfusion pressure increased by 84 +/- 3 mmHg. Adenosine-induced reductions in coronary perfusion pressure were expressed as a percentage of the maximal increase in pressure produced by modified Krebs-Henseleit buffer from the equilibration level. A concentration-response curve for adenosine (n = 6) was biphasic and best described by the presence of two adenosine receptors, with negative log EC50 values of 8.8 +/- 0.3 and 4.3 +/- 0.1, representing 29 +/- 3 and 71 +/- 3%, respectively, of the observed response. Interstitial adenosine sampled by microdialysis during potassium arrest was 25% of the concentration found in paced hearts. Endogenous adenosine in nonarrested hearts may obscure the biphasic response of the coronary vessels to adenosine.