347 resultados para Distance measurement
Resumo:
This paper reports on a mathematics project conducted with six Torres Strait Islander schools and communities by the research team at the YuMi Deadly Centre at QUT. Data collected is from a small focus group of six teachers and two teacher aides. We investigated how measurement is taught and learned by students, their teachers and teacher aides in the community schools. A key focus of the project was that the teaching and learning of measurement be contextualised to the students’ culture, community and home languages. A significant finding from the project was that the teachers had differing levels of knowledge and understanding about how to contextualise measurement to support student learning. For example, an Indigenous teacher identified that mathematics and the environment are relational, that is, they are not discrete and in isolation from one another, rather they mesh together, thus affording the articulation and interchange among and between mathematics and Torres Strait Islander culture.
Resumo:
Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 meters under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 seconds of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems.
Resumo:
The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.
Resumo:
Commonwealth Scientific and Industrial Research Organization (CSIRO) has recently conducted a technology demonstration of a novel fixed wireless broadband access system in rural Australia. The system is based on multi user multiple-input multiple-output orthogonal frequency division multiplexing (MU-MIMO-OFDM). It demonstrated an uplink of six simultaneous users with distances ranging from 10 m to 8.5 km from a central tower, achieving 20 bits s/Hz spectrum efficiency. This paper reports on the analysis of channel capacity and bit error probability simulation based on the measured MUMIMO-OFDM channels obtained during the demonstration, and their comparison with the results based on channels simulated by a novel geometric optics based channel model suitable for MU-MIMO OFDM in rural areas. Despite its simplicity, the model was found to predict channel capacity and bit error rate probability accurately for a typical MU-MIMO-OFDM deployment scenario.
Resumo:
Study Design. A sheep study designed to compare the accuracy of static radiographs, dynamic radiographs, and computed tomographic (CT) scans for the assessment of thoracolumbar facet joint fusion as determined by micro-CT scanning. Objective. To determine the accuracy and reliability of conventional imaging techniques in identifying the status of thoracolumbar (T13-L1) facet joint fusion in a sheep model. Summary of Background Data. Plain radiographs are commonly used to determine the integrity of surgical arthrodesis of the thoracolumbar spine. Many previous studies of fusion success have relied solely on postoperative assessment of plain radiographs, a technique lacking sensitivity for pseudarthrosis. CT may be a more reliable technique, but is less well characterized. Methods. Eleven adult sheep were randomized to either attempted arthrodesis using autogenous bone graft and internal fixation (n = 3) or intentional pseudarthrosis (IP) using oxidized cellulose and internal fixation (n = 8). After 6 months, facet joint fusion was assessed by independent observers, using (1) plain static radiography alone, (2) additional dynamic radiographs, and (3) additional reconstructed spiral CT imaging. These assessments were correlated with high-resolution micro-CT imaging to predict the utility of the conventional imaging techniques in the estimation of fusion success. Results. The capacity of plain radiography alone to correctly predict fusion or pseudarthrosis was 43% and was not improved using plain radiography and dynamic radiography with also a 43% accuracy. Adding assessment by reformatted CT imaging to the plain radiography techniques increased the capacity to predict fusion outcome to 86% correctly. The sensitivity, specificity, and accuracy of static radiography were 0.33, 0.55, and 0.43, respectively, those of dynamic radiography were 0.46, 0.40, and 0.43, respectively, and those of radiography plus CT were 0.88, 0.85, and 0.86, respectively. Conclusion. CT-based evaluation correlated most closely with high-resolution micro-CT imaging. Neither plain static nor dynamic radiographs were able to predict fusion outcome accurately. © 2012 Lippincott Williams & Wilkins.
Resumo:
Navigational safety analysis relying on collision statistics is often hampered because of low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possesses great potential for managing collision risks in port waters.
Resumo:
Enterprise architecture (EA) management has become an intensively discussed approach to manage enterprise transformations. Despite the popularity and potential of EA, both researchers and practitioners lament a lack of knowledge about the realization of benefits from EA. To determine the benefits from EA, we explore the various dimensions of EA benefit realization and report on the development of a validated and robust measurement instrument. In this paper, we test the reliability and construct validity of the EA benefit realization model (EABRM), which we have designed based on the DeLone & McLean IS success model and findings from exploratory interviews. A confirmatory factor analysis confirms the existence of an impact of five distinct and individually important dimensions on the benefits derived from EA: EA artefact quality, EA infrastructure quality, EA service quality, EA culture, and EA use. The analysis presented in this paper shows that the EA benefit realization model is an instrument that demonstrates strong reliability and validity.
Resumo:
At cryogenic temperature, a fiber Bragg grating (FBG) temperature sensor with controllable sensitivity and variable measurement range is demonstrated by using bimetal configuration. In experiments, sensitivities of -51.2, -86.4, and -520 pm/K are achieved by varying the lengths of the metals. Measurement ranges of 293-290.5, 283-280.5, and 259-256.5 K are achieved by shortening the distance of the gap among the metals.
Resumo:
Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO 4), are obtained using attenuated total reflectance-FTIR. Absorption bands related to cellulose, hemicelluloses, and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO 4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalyzed -aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO 4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm 1 has demonstrated utility. When coupled with the gravimetric Klason lignin method, ATR-FTIR study of reaction mixtures can lead to a better understanding of the delignification process. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Background: The accurate evaluation of physical activity levels amongst youth is critical for quantifying physical activity behaviors and evaluating the effect of physical activity interventions. The purpose of this review is to evaluate contemporary approaches to physical activity evaluation amongst youth. Data sources: The literature from a range of sources was reviewed and synthesized to provide an overview of contemporary approaches for measuring youth physical activity. Results: Five broad categories are described: self-report, instrumental movement detection, biological approaches, direct observation, and combined methods. Emerging technologies and priorities for future research are also identified. Conclusions: There will always be a trade-off between accuracy and available resources when choosing the best approach for measuring physical activity amongst youth. Unfortunately, cost and logistical challenges may prohibit the use of "gold standard" physical activity measurement approaches such as doubly labelled water. Other objective methods such as heart rate monitoring, accelerometry, pedometry, indirect calorimetry, or a combination of measures have the potential to better capture the duration and intensity of physical activity, while self-reported measures are useful for capturing the type and context of activity.
Resumo:
Differences in the NMR detectability of 39K in various excised rat tissues (liver, brain, kidney, muscle, and testes) have been observed. The lowest NMR detectability occurs for liver (61 ± 3% of potassium as measured by flame photometry) and highest for erythrocytes (100 ± 7%). These differences in detectability correlate with differences in the measured 39K NMR relaxation constants in the same tissues. 39K detectabilities were also found to correlate inversely with the mitochondrial content of the tissues. Mitochondria prepared from liver showed greatly reduced 39K NMR detectability when compared with the tissue from which it was derived, 31.6 ± 9% of potassium measured by flame photometry compared to 61 ± 3%. The detectability of potassium in mitochondria was too low to enable the measurement of relaxation constants. This study indicates that differences in tissue structure, particularly mitochondrial content are important in determining 39K detectability and measured relaxation rates.
Resumo:
Data quality has become a major concern for organisations. The rapid growth in the size and technology of a databases and data warehouses has brought significant advantages in accessing, storing, and retrieving information. At the same time, great challenges arise with rapid data throughput and heterogeneous accesses in terms of maintaining high data quality. Yet, despite the importance of data quality, literature has usually condensed data quality into detecting and correcting poor data such as outliers, incomplete or inaccurate values. As a result, organisations are unable to efficiently and effectively assess data quality. Having an accurate and proper data quality assessment method will enable users to benchmark their systems and monitor their improvement. This paper introduces a granules mining for measuring the random degree of error data which will enable decision makers to conduct accurate quality assessment and allocate the most severe data, thereby providing an accurate estimation of human and financial resources for conducting quality improvement tasks.