869 resultados para Data Deduplication Compression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: All currently considered parametric models used for decomposing videokeratoscopy height data are viewercentered and hence describe what the operator sees rather than what the surface is. The purpose of this study was to ascertain the applicability of an object-centered representation to modeling of corneal surfaces. Methods: A three-dimensional surface decomposition into a series of spherical harmonics is considered and compared with the traditional Zernike polynomial expansion for a range of videokeratoscopic height data. Results: Spherical harmonic decomposition led to significantly better fits to corneal surfaces (in terms of the root mean square error values) than the corresponding Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters, and model orders. Conclusions: Spherical harmonic decomposition is a viable alternative to Zernike polynomial decomposition. It achieves better fits to videokeratoscopic height data and has the advantage of an object-centered representation that could be particularly suited to the analysis of multiple corneal measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low back pain is an increasing problem in industrialised countries and although it is a major socio-economic problem in terms of medical costs and lost productivity, relatively little is known about the processes underlying the development of the condition. This is in part due to the complex interactions between bone, muscle, nerves and other soft tissues of the spine, and the fact that direct observation and/or measurement of the human spine is not possible using non-invasive techniques. Biomechanical models have been used extensively to estimate the forces and moments experienced by the spine. These models provide a means of estimating the internal parameters which can not be measured directly. However, application of most of the models currently available is restricted to tasks resembling those for which the model was designed due to the simplified representation of the anatomy. The aim of this research was to develop a biomechanical model to investigate the changes in forces and moments which are induced by muscle injury. In order to accurately simulate muscle injuries a detailed quasi-static three dimensional model representing the anatomy of the lumbar spine was developed. This model includes the nine major force generating muscles of the region (erector spinae, comprising the longissimus thoracis and iliocostalis lumborum; multifidus; quadratus lumborum; latissimus dorsi; transverse abdominis; internal oblique and external oblique), as well as the thoracolumbar fascia through which the transverse abdominis and parts of the internal oblique and latissimus dorsi muscles attach to the spine. The muscles included in the model have been represented using 170 muscle fascicles each having their own force generating characteristics and lines of action. Particular attention has been paid to ensuring the muscle lines of action are anatomically realistic, particularly for muscles which have broad attachments (e.g. internal and external obliques), muscles which attach to the spine via the thoracolumbar fascia (e.g. transverse abdominis), and muscles whose paths are altered by bony constraints such as the rib cage (e.g. iliocostalis lumborum pars thoracis and parts of the longissimus thoracis pars thoracis). In this endeavour, a separate sub-model which accounts for the shape of the torso by modelling it as a series of ellipses has been developed to model the lines of action of the oblique muscles. Likewise, a separate sub-model of the thoracolumbar fascia has also been developed which accounts for the middle and posterior layers of the fascia, and ensures that the line of action of the posterior layer is related to the size and shape of the erector spinae muscle. Published muscle activation data are used to enable the model to predict the maximum forces and moments that may be generated by the muscles. These predictions are validated against published experimental studies reporting maximum isometric moments for a variety of exertions. The model performs well for fiexion, extension and lateral bend exertions, but underpredicts the axial twist moments that may be developed. This discrepancy is most likely the result of differences between the experimental methodology and the modelled task. The application of the model is illustrated using examples of muscle injuries created by surgical procedures. The three examples used represent a posterior surgical approach to the spine, an anterior approach to the spine and uni-lateral total hip replacement surgery. Although the three examples simulate different muscle injuries, all demonstrate the production of significant asymmetrical moments and/or reduced joint compression following surgical intervention. This result has implications for patient rehabilitation and the potential for further injury to the spine. The development and application of the model has highlighted a number of areas where current knowledge is deficient. These include muscle activation levels for tasks in postures other than upright standing, changes in spinal kinematics following surgical procedures such as spinal fusion or fixation, and a general lack of understanding of how the body adjusts to muscle injuries with respect to muscle activation patterns and levels, rate of recovery from temporary injuries and compensatory actions by other muscles. Thus the comprehensive and innovative anatomical model which has been developed not only provides a tool to predict the forces and moments experienced by the intervertebral joints of the spine, but also highlights areas where further clinical research is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic venous leg ulcers have a significant impact on older individuals’ well-being and health care resources. Unfortunately after healing, up to 70% recur. ----- Objective: To examine the relationships between leg ulcer recurrence and physical activity, compression, nutrition, health, psychosocial indicators and self-care activities in order to provide information for preventive strategies. ----- Design: Survey and retrospective chart review Settings: Two metropolitan hospital and three community-based leg ulcer clinics. ----- Subjects: A sample of 122 community living patients with leg ulcer of venous aetiology which had healed between 12 and 36 months prior to the survey. ---- Methods: Data were collected from medical records on demographics, medical history and previous ulcer history and treatments; and from self-report questionnaires on physical activity, nutrition, psychosocial measures, ulcer recurrences and history, compression and other self-care activities. All variables significantly associated with recurrence at the bivariate level were entered into a logistic regression model to determine their independent influences on recurrence. ----- Results: Median follow-up time was 24 months (range 12–40 months). Sixty-eight percent of participants had recurred. Bivariate analysis found recurrence was positively associated with ulcer duration, cardiac disease, a Body Mass Index ≤20, scoring as at-risk of malnutrition and depression; and negatively associated with increased physical activity, leg elevation, wearing Class 2 (20–25mmHg) or Class 3 (30–40mmHg) compression hosiery, and higher self-efficacy scores. After adjusting for all variables, an hour/day of leg elevation (OR=0.04, 95% CI=0.01–0.17), days/week in Class 2 or 3 compression hosiery (OR=0.53, 95% CI=0.34–0.81), Yale Physical Activity Survey score (OR=0.95, 95% CI=0.92–0.98), cardiac disease (OR=5.03, 95% CI=1.01–24.93) and General Self-Efficacy scores (OR=0.83, 95% CI=0.72–0.94) remained significantly associated (p<0.05) with recurrence. ----- Conclusions: Results indicate a history of cardiac disease is a risk factor for recurrence; while leg elevation, physical activity, compression hosiery and strategies to improve self-efficacy are likely to prevent recurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An educational priority of many nations is to enhance mathematical learning in early childhood. One area in need of special attention is that of statistics. This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling activities. Such modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (i.e., identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Results are reported from the first year of a three-year longitudinal study in which three classes of first-grade children and their teachers engaged in activities that required the creation of data models. The theme of “Looking after our Environment,” a component of the children’s science curriculum at the time, provided the context for the activities. Findings focus on how the children dealt with given complex attributes and how they generated their own attributes in classifying broad data sets, and the nature of the models the children created in organising, structuring, and representing their data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To quantify the extent to which alcohol related injuries are adequately identified in hospitalisation data using ICD-10-AM codes indicative of alcohol involvement. Method: A random sample of 4373 injury-related hospital separations from 1 July 2002 to 30 June 2004 were obtained from a stratified random sample of 50 hospitals across 4 states in Australia. From this sample, cases were identified as involving alcohol if they contained an ICD-10-AM diagnosis or external cause code referring to alcohol, or if the text description extracted from the medical records mentioned alcohol involvement. Results: Overall, identification of alcohol involvement using ICD codes detected 38% of the alcohol-related sample, whilst almost 94% of alcohol-related cases were identified through a search of the text extracted from the medical records. The resultant estimate of alcohol involvement in injury-related hospitalisations in this sample was 10%. Emergency department records were the most likely to identify whether the injury was alcohol-related with almost three-quarters of alcohol-related cases mentioning alcohol in the text abstracted from these records. Conclusions and Implications: The current best estimates of the frequency of hospital admissions where alcohol is involved prior to the injury underestimate the burden by around 62%. This is a substantial underestimate that has major implications for public policy, and highlights the need for further work on improving the quality and completeness of routine administrative data sources for identification of alcohol-related injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine the sources of coding discrepancy for injury morbidity data and explore the implications of these sources for injury surveillance.-------- Method: An on-site medical record review and recoding study was conducted for 4373 injury-related hospital admissions across Australia. Codes from the original dataset were compared to the recoded data to explore the reliability of coded data aand sources of discrepancy.---------- Results: The most common reason for differences in coding overall was assigning the case to a different external cause category with 8.5% assigned to a different category. Differences in the specificity of codes assigned within a category accounted for 7.8% of coder difference. Differences in intent assignment accounted for 3.7% of the differences in code assignment.---------- Conclusions: In the situation where 8 percent of cases are misclassified by major category, the setting of injury targets on the basis of extent of burden is a somewhat blunt instrument Monitoring the effect of prevention programs aimed at reducing risk factors is not possible in datasets with this level of misclassification error in injury cause subcategories. Future research is needed to build the evidence base around the quality and utility of the ICD classification system and application of use of this for injury surveillance in the hospital environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

User-Based intelligent systems are already commonplace in a student’s online digital life. Each time they browse, search, buy, join, comment, play, travel, upload, download, a system collects, analyses and processes data in an effort to customise content and further improve services. This panel session will explore how intelligent systems, particularly those that gather data from mobile devices, can offer new possibilities to assist in the delivery of customised, personal and engaging learning experiences. The value of intelligent systems for education lies in their ability to formulate authentic and complex learner profiles that bring together and systematically integrate a student’s personal world with a formal curriculum framework. As we well know, a mobile device can collect data relating to a student’s interests (gathered from search history, applications and communications), location, surroundings and proximity to others (GPS, Bluetooth). However, what has been less explored is the opportunity for a mobile device to map the movements and activities of a student from moment to moment and over time. This longitudinal data provides a holistic profile of a student, their state and surroundings. Analysing this data may allow us to identify patterns that reveal a student’s learning processes; when and where they work best and for how long. Through revealing a student’s state and surroundings outside of schools hour, this longitudinal data may also highlight opportunities to transform a student’s everyday world into an inventory for learning, punctuating their surroundings with learning recommendations. This would in turn lead to new ways to acknowledge and validate and foster informal learning, making it legitimate within a formal curriculum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies. This paper traces the background of adiabatic compression testing in the oxygen community and discusses the thermodynamic and fluid dynamic processes that occur during rapid pressure surges. This paper is the first of several papers by the authors on the subject of adiabatic compression testing and is presented as a non-comprehensive background and introduction.