835 resultados para Conceptual modelling
Resumo:
Knowledge management (KM) continues to receive mounting interest within the construction industry due to its potential to offer solutions for organisations seeking competitive advantage. This paper presents a KM input-process-output conceptual model comprising unique and well-defined theoretical constructs representing KM practices and their internal and external determinants in the context of construction. The paper also presents the underlying principles used in operationally defining each construct using extant KM literature, and offers a number of testable hypotheses that capture the inter-relationships between the identified constructs.
Resumo:
Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.
Resumo:
This chapter addresses data modelling as a means of promoting statistical literacy in the early grades. Consideration is first given to the importance of increasing young children’s exposure to statistical reasoning experiences and how data modelling can be a rich means of doing so. Selected components of data modelling are then reviewed, followed by a report on some findings from the third-year of a three-year longitudinal study across grades one through three.
Resumo:
Building with Building Information Modelling (BIM) changes design and production processes. But can BIM be used to support process changes designed according to lean production and lean construction principles? To begin to answer this question we provide a conceptual analysis of the interaction of lean construction and BIM for improving construction. This was investigated by compiling a detailed listing of lean construction principles and BIM functionalities which are relevant from this perspective. These were drawn from a detailed literature survey. A research framework for analysis of the interaction between lean and BIM was then compiled. The goal of the framework is to both guide and stimulate research; as such, the approach adopted up to this point is constructive. Ongoing research has identified 55 such interactions, the majority of which show positive synergy between the two.
Resumo:
Annually, several million tonnes of waste are produced from reworks, demolition, and use of substandard materials. Building Information Modelling (BIM), a digital representation of facilities and their constituent data, is a viable means of addressing some concerns about the impacts of these processes. BIM functionalities can be extended and combined with rich building information from specifications and product libraries, for efficient, streamlined design and construction. This paper conceptualises a framework for BIM-knowledge transfer from advanced economies for adaptation and use in urban development works in developing nations using the Sydney Down Under and Lagos Eko Atlantic projects as reference points. We present a scenario that highlights BIM-based lifecycle planning/specifications as agents of sustainable construction (in terms of cost and time) crucial to the quality of as-built data from early on in city development. We show how, through the use of BIM, city planners in developing nations can avoid high, retrospective (and sometimes wasteful) maintenance costs and leapfrog infrastructure management standards of advanced economies. Finally, this paper illustrates how BIM can address concerns about economic sustainability during city development in developing countries by enriching model objects with specification information sourced from a product library.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. While the systematicity and productivity of language provide a strong argument in favour of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. Rather than adjudicating between different grades of compositionality, the framework presented here contributes formal methods for determining a clear dividing line between compositional and non-compositional semantics. Compositionality is equated with a joint probability distribution modelling how the constituent concepts in the combination are interpreted. Marginal selectivity is emphasised as a pivotal probabilistic constraint for the application of the Bell/CH and CHSH systems of inequalities (referred to collectively as Bell-type). Non-compositionality is then equated with either a failure of marginal selectivity, or, in the presence of marginal selectivity, with a violation of Bell-type inequalities. In both non-compositional scenarios, the conceptual combination cannot be modelled using a joint probability distribution with variables corresponding to the interpretation of the individual concepts. The framework is demonstrated by applying it to an empirical scenario of twenty-four non-lexicalised conceptual combinations.
Resumo:
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.
Resumo:
This thesis studies how conceptual process models - that is, graphical documentations of an organisation's business processes - can enable and constrain the actions of their users. The results from case study and experiment indicate that model design decisions and people's characteristics influence how these opportunities for action are perceived and acted upon in practice.