147 resultados para Computer networks.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The requirement of isolated relays is one of the prime obstacles in utilizing sequential slotted cooperative protocols for Vehicular Ad-hoc Networks (VANET). Significant research advancement has taken place to improve the diversity multiplexing trade-off (DMT) of cooperative protocols in conventional mobile networks without much attention on vehicular ad-hoc networks. We have extended the concept of sequential slotted amplify and forward (SAF) protocols in the context of urban vehicular ad-hoc networks. Multiple Input Multiple Output (MIMO) reception is used at relaying vehicular nodes to isolate the relays effectively. The proposed approach adds a pragmatic value to the sequential slotted cooperative protocols while achieving attractive performance gains in urban VANETs. We have analysed the DMT bounds and the outage probabilities of the proposed scheme. The results suggest that the proposed scheme can achieve an optimal DMT similar to the DMT upper bound of the sequential SAF. Furthermore, the outage performance of the proposed scheme outperforms the SAF protocol by 2.5 dB at a target outage probability of 10-4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effect of mobility constraints on epidemic broadcast mechanisms in DTNs (Delay-Tolerant Networks). Major factors affecting epidemic broadcast performances are its forwarding algorithm and node mobility. The impact of forwarding algorithm and node mobility on epidemic broadcast mechanisms has been actively studied in the literature, but those studies generally use unconstrained mobility models. The objective of this paper is therefore to quantitatively investigate the effect of mobility constraints on epidemic broadcast mechanisms. We evaluate the performances of three classes of epidemic broadcast mechanisms - P-BCAST (PUSH-based BroadCast), SA-BCAST (Self-Adaptive BroadCast), and HP-BCAST (History-based P-BCAST) - with a random waypoint mobility model with mobility constraints. Our finding includes that the existence of mobility constraints significantly improves the reach ability and dissemination speed of epidemic broadcast mechanisms while degrading their efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The latest generation of Deep Convolutional Neural Networks (DCNN) have dramatically advanced challenging computer vision tasks, especially in object detection and object classification, achieving state-of-the-art performance in several computer vision tasks including text recognition, sign recognition, face recognition and scene understanding. The depth of these supervised networks has enabled learning deeper and hierarchical representation of features. In parallel, unsupervised deep learning such as Convolutional Deep Belief Network (CDBN) has also achieved state-of-the-art in many computer vision tasks. However, there is very limited research on jointly exploiting the strength of these two approaches. In this paper, we investigate the learning capability of both methods. We compare the output of individual layers and show that many learnt filters and outputs of the corresponding level layer are almost similar for both approaches. Stacking the DCNN on top of unsupervised layers or replacing layers in the DCNN with the corresponding learnt layers in the CDBN can improve the recognition/classification accuracy and training computational expense. We demonstrate the validity of the proposal on ImageNet dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major advances in power electronics during recent years have prompted considerable interest within the traction community. The capability of new technologies to reduce the AC railway networks' effect on power quality and improve their supply efficiency is expected to significantly decrease the cost of electric rail supply systems. Of particular interest are Static Frequency Converter (SFC), Rail Power Conditioner (RPC), High Voltage Direct Current (HVDC) and Energy Storage Systems (ESS) solutions. Substantial impacts on future feasibility of railway electrification are anticipated. Aurizon, Australia's largest heavy haul railway operator, has recently commissioned the world's first 50Hz/50Hz SFC installation and is currently investigating SFC, RPC, HVDC and ESS solutions. This paper presents a summary of current and emerging technologies with a particular focus on the potential techno-economic benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a flexible and integrated planning tool for active distribution network to maximise the benefits of having high level s of renewables, customer engagement, and new technology implementations. The tool has two main processing parts: “optimisation” and “forecast”. The “optimization” part is an automated and integrated planning framework to optimize the net present value (NPV) of investment strategy for electric distribution network augmentation over large areas and long planning horizons (e.g. 5 to 20 years) based on a modified particle swarm optimization (MPSO). The “forecast” is a flexible agent-based framework to produce load duration curves (LDCs) of load forecasts for different levels of customer engagement, energy storage controls, and electric vehicles (EVs). In addition, “forecast” connects the existing databases of utility to the proposed tool as well as outputs the load profiles and network plan in Google Earth. This integrated tool enables different divisions within a utility to analyze their programs and options in a single platform using comprehensive information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy resources, in particularly PV and battery storage are increasingly becoming part of residential and agriculture premises to manage their electricity consumption. This thesis addresses the tremendous technical, financial and planning challenges for utilities created by these increases, by offering techniques to examine the significance of various renewable resources in electricity network planning. The outcome of this research should assist utilities and customers for adequate planning that can be financially effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of social networking has exploded, with millions of people using various web- and mobile-based services around the world. This increase in social networking use has led to user anxiety related to privacy and the unauthorised exposure of personal information. Large-scale sharing in virtual spaces means that researchers, designers and developers now need to re-consider the issues and challenges of maintaining privacy when using social networking services. This paper provides a comprehensive survey of the current state-of-the-art privacy in social networks for both desktop and mobile uses and devices from various architectural vantage points. The survey will assist researchers and analysts in academia and industry to move towards mitigating many of the privacy issues in social networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Body Area Network (BAN) is an emerging technology that focuses on monitoring physiological data in, on and around the human body. BAN technology permits wearable and implanted sensors to collect vital data about the human body and transmit it to other nodes via low-energy communication. In this paper, we investigate interactions in terms of data flows between parties involved in BANs under four different scenarios targeting outdoor and indoor medical environments: hospital, home, emergency and open areas. Based on these scenarios, we identify data flow requirements between BAN elements such as sensors and control units (CUs) and parties involved in BANs such as the patient, doctors, nurses and relatives. Identified requirements are used to generate BAN data flow models. Petri Nets (PNs) are used as the formal modelling language. We check the validity of the models and compare them with the existing related work. Finally, using the models, we identify communication and security requirements based on the most common active and passive attack scenarios.