489 resultados para Cleaning behaviour
Resumo:
This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.
Resumo:
Mindfulness is a concept which has been widely used in studies on consciousness, but has recently been applied to the understanding of behaviours in other areas, including clinical psychology, meditation, physical activity, education and business. It has been suggested that mindfulness can also be applied to road safety, though this has not yet been researched. A standard definition of mindfulness is “paying attention in a particular way, on purpose in the present moment and non-judgemental to the unfolding of experience moment by moment” [1]. Scales have been developed to measure mindfulness; however, there are different views in the literature on the nature of the mindfulness construct. This paper reviews the issues raised in the literature and arrives at an operational definition of mindfulness considered relevant to road safety. It is further proposed that mindfulness is best construed as operating together with other psychosocial factors to influence road safety behaviours. The specific case of speeding behaviour is outlined, where the psychosocial variables in the Theory of Planned Behaviour (TPB) have been demonstrated to predict both intention to speed and actual speeding behaviour. A role is proposed for mindfulness in enhancing the explanatory and predictive powers of the TPB concerning speeding. The implications of mindfulness for speeding countermeasures are discussed and a program of future research is outlined.
Resumo:
‘Hooning’ constitutes a set of illegal and high-risk vehicle related activities typically performed by males aged 17-25, a group that is over-represented in road trauma statistics. This study used an online survey of 422 participants to test the efficacy of the Five Factor Model of Personality in predicting ‘loss of traction’ (LOT) hooning behaviour. Drivers who engaged in LOT behaviour scored significantly lower on the factor of Agreeableness than those who did not. Regression analyses indicated that the Five Factor Model of Personality was a significant predictor of LOT behaviour over and above sex and age, although Agreeableness was the only significant personality factor in the model. The findings may be used to better understand those drivers likely to engage in LOT behaviours. Road safety advertising and educational campaigns can target less socially agreeable drivers, and aim to encourage more agreeable attitudes to driving, particularly for younger male drivers.