462 resultados para Bayesian approaches
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.
Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data
Resumo:
In this paper, we apply the incremental EM method to Bayesian Network Classifiers to learn and interpret hyperspectral sensor data in robotic planetary missions. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. Many spacecraft carry spectroscopic equipment as wavelengths outside the visible light in the electromagnetic spectrum give much greater information about an object. The algorithm used is an extension to the standard Expectation Maximisation (EM). The incremental method allows us to learn and interpret the data as they become available. Two Bayesian network classifiers were tested: the Naive Bayes, and the Tree-Augmented-Naive Bayes structures. Our preliminary experiments show that incremental learning with unlabelled data can improve the accuracy of the classifier.
Resumo:
Estimating potential health risks associated with recycled (reused) water is highly complex given the multiple factors affecting water quality. We take a conceptual model, which represents the factors and pathways by which recycled water may pose a risk of contracting gastroenteritis, convert the conceptual model to a Bayesian net, and quantify the model using one expert’s opinion. This allows us to make various predictions as to the risks posed under various scenarios. Bayesian nets provide an additional way of modeling the determinants of recycled water quality and elucidating their relative influence on a given disease outcome. The important contribution to Bayesian net methodology is that all model predictions, whether risk or relative risk estimates, are expressed as credible intervals.
Resumo:
We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms by using indirect inference. ABC methods are useful for posterior inference in the presence of an intractable likelihood function. In the indirect inference approach to ABC the parameters of an auxiliary model fitted to the data become the summary statistics. Although applicable to any ABC technique, we embed this approach within a sequential Monte Carlo algorithm that is completely adaptive and requires very little tuning. This methodological development was motivated by an application involving data on macroparasite population evolution modelled by a trivariate stochastic process for which there is no tractable likelihood function. The auxiliary model here is based on a beta–binomial distribution. The main objective of the analysis is to determine which parameters of the stochastic model are estimable from the observed data on mature parasite worms.
Resumo:
The affects associated with culture, the values inherent in cultures and the identification of cultural assumptions are popular topics in recent management and Information Systems (IS) research. The main focus in relevant IS research over the years, has been on the comparison of cultural artifacts in different cultural settings. Despite these studies we need to ask whether there is a general approach to how culture can be researched in a rigorous manner? What are the issues that arise in cross- cultural research that have a bearing on decisions about a suitable research approach? What are the most appropriate methodologies to be used in cross-cultural research? Which is more appropriate, a qualitative, a quantitative or a mixed- method research approach? This paper will discuss important considerations in the process of deciding on the best research approach for cross-cultural projects. A case study will be then be reported as an example revealing the merits of integrating qualitative and quantitative approaches followed by a thorough discussion on the issues which may arise during this process.
Resumo:
Intelligible and accurate risk-based decision-making requires a complex balance of information from different sources, appropriate statistical analysis of this information and consequent intelligent inference and decisions made on the basis of these analyses. Importantly, this requires an explicit acknowledgement of uncertainty in the inputs and outputs of the statistical model. The aim of this paper is to progress a discussion of these issues in the context of several motivating problems related to the wider scope of agricultural production. These problems include biosecurity surveillance design, pest incursion, environmental monitoring and import risk assessment. The information to be integrated includes observational and experimental data, remotely sensed data and expert information. We describe our efforts in addressing these problems using Bayesian models and Bayesian networks. These approaches provide a coherent and transparent framework for modelling complex systems, combining the different information sources, and allowing for uncertainty in inputs and outputs. While the theory underlying Bayesian modelling has a long and well established history, its application is only now becoming more possible for complex problems, due to increased availability of methodological and computational tools. Of course, there are still hurdles and constraints, which we also address through sharing our endeavours and experiences.
Resumo:
Micro-businesses, those with fewer than five employees, have a significant impact on the economy. These very small players represent 89% of all Australian businesses and, collectively, they provide 17% of the nation’s private sector employment. They are ubiquitous in Australia as in many other nations, embedded in local communities and therefore well placed to influence community wellbeing. Surprisingly, very little is known about micro-Business Community Responsibility (mBCR), the micro-business equivalent of Small Business Social Responsibility (SBSR) and Corporate Social Responsibility (CSR). Most national data available on business support for community wellbeing does not separately identify micro-business contributions. In this study an exploratory approach informed by business ethics theory was taken. Data from 36 semi-structured interviews was analysed to examine perceived mBCR approaches, motivations and barriers. The sample for this study was a mix of micro-business owner-operators situated in suburban shopping areas in Brisbane. Three types of mBCR emerged. All types are at least partly driven by enlightened selfinterest (ESI). However of the three mBCR types, two combine ESI with other approaches. One type combines ESI and philanthropic approaches to mBCR, and the other combines ESI with social entrepreneurial approaches to mBCR. The combination of doing business and doing good for many micro-business owneroperators, suggests mBCR may be a significant, yet unrecognised component of the third sector social economy.
Resumo:
This report presents the findings of an exploratory study into the perceptions held by students regarding the use of criterion-referenced assessment in an undergraduate differential equations class. Students in the class were largely unaware of the concept of criterion referencing and of the various interpretations that this concept has among mathematics educators. Our primary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. Quantitative data and qualitative feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, the manner in which they actually approached the assessment activity was not altered as a result of the use of explicitly communicated grading criteria.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).