366 resultados para BARTLETT CORRECTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world we live in is well labeled for the benefit of humans but to date robots have made little use of this resource. In this paper we describe a system that allows robots to read and interpret visible text and use it to understand the content of the scene. We use a generative probabilistic model that explains spotted text in terms of arbitrary search terms. This allows the robot to understand the underlying function of the scene it is looking at, such as whether it is a bank or a restaurant. We describe the text spotting engine at the heart of our system that is able to detect and parse wild text in images, and the generative model, and present results from images obtained with a robot in a busy city setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the regret of optimal strategies for online convex optimization games. Using von Neumann's minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary's action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen's inequality for a concave functional--the minimizer over the player's actions of expected loss--defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary. Peter L. Bartlett, Alexander Rakhlin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An initialisation process is a key component in modern stream cipher design. A well-designed initialisation process should ensure that each key-IV pair generates a different key stream. In this paper, we analyse two ciphers, A5/1 and Mixer, for which this does not happen due to state convergence. We show how the state convergence problem occurs and estimate the effective key-space in each case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggressive driving is increasingly a concern for drivers in highly motorised countries. However, the role of driver intent in this behaviour is problematic and there is little research on driver cognitions in relation to aggressive driving incidents. In addition, while drivers who admit to behaving aggressively on the road also frequently report being recipients of similar behaviours, little is known about the relationship between perpetration and victimisation or about how road incidents escalate into the more serious events that feature in capture media attention. The current study used qualitative interviews to explore driver cognitions and underlying motivations for aggressive behaviours on the road. A total of 30 drivers aged 18-49 years were interviewed about their experiences with aggressive driving. A key theme identified in responses was driver aggression as an attempt to manage or modify the behaviour of other road users. Two subthemes were identified and appeared related to separate motivations for aggressive responses: ‘teaching them a lesson’ referred to situations where respondents intended to convey criticism or disapproval, usually of unintended behaviours by the other driver, and thus encourage self-correction; and ‘justified retaliation’ which referred to situations where respondents perceived deliberate intent on the part of the other driver and responded aggressively in return. Mildly aggressive driver behaviour appears to be common. Moreover such behaviour has a sufficiently negative impact on other drivers that it may be worth addressing because of its potential for triggering retaliation in kind or escalation of aggression, thus compromising safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Anorexia nervosa (AN) is a growing problem among young female Singaporeans. We studied the demographics and follow-up data of AN patients referred to dietitians for nutritional intervention. METHODS: A retrospective nutritional notes review was done on 94 patients seen from 1992 to 2004. All patients were given nutritional intervention, which included individualised counselling for weight gain, personalised diet plan, correction of poor dietary intake and correction of perception towards healthy eating. We collected data on body mass index (BMI), patient demographics and outcome. RESULTS: 96 percent of the patients were female and 86.2 percent were Chinese. The median BMI at initial consultation was 14.7 kilogramme per square metre (range, 8.6-18.8 kilogramme per square metre). 76 percent were between 13 and 20 years old. 83 percent of the patients came back for follow-up appointments with the dietitians in addition to consultation with the psychiatrist. Overall, there was significant improvement in weight and BMI from an average 37 kg to 41 kg and 14.7 kilogramme per square metre to 16.4 kilogramme per square metre, respectively, between the fi rst and fi nal consultations (p-value is less than 0.001). The average duration of followup was about eight months. Among the patients on follow-up, 68 percent showed improvement with an average weight gain of 6 kg. Patients that improved had more outpatient follow-up sessions with the dietitians (4.2 consultations versus 1.6 consultations; p-value is less than 0.05), lower BMI at presentation (14.2 kilogramme per square metre versus 15.7 kilogramme per square metre; p-value is less than 0.01) and shorter duration of disease at presentation (one year versus three years; p-value is less than 0.05) compared with those who did not improve. Seven patients with the disease for more than two years did not show improvement with follow-up. CONCLUSION: We gained valuable understanding of the AN patients referred to our tertiary hospital for treatment, two-thirds of whom improved with adequate follow-up treatment. Patients that had suffered AN longer before seeking help appeared more resistant to improvement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Language is a unique aspect of human communication because it can be used to discuss itself in its own terms. For this reason, human societies potentially have superior capacities of co-ordination, reflexive self-correction, and innovation than other animal, physical or cybernetic systems. However, this analysis also reveals that language is interconnected with the economically and technologically mediated social sphere and hence is vulnerable to abstraction, objectification, reification, and therefore ideology – all of which are antithetical to its reflexive function, whilst paradoxically being a fundamental part of it. In particular, in capitalism, language is increasingly commodified within the social domains created and affected by ubiquitous communication technologies. The advent of the so-called ‘knowledge economy’ implicates exchangeable forms of thought (language) as the fundamental commodities of this emerging system. The historical point at which a ‘knowledge economy’ emerges, then, is the critical point at which thought itself becomes a commodified ‘thing’, and language becomes its “objective” means of exchange. However, the processes by which such commodification and objectification occurs obscures the unique social relations within which these language commodities are produced. The latest economic phase of capitalism – the knowledge economy – and the obfuscating trajectory which accompanies it, we argue, is destroying the reflexive capacity of language particularly through the process of commodification. This can be seen in that the language practices that have emerged in conjunction with digital technologies are increasingly non-reflexive and therefore less capable of self-critical, conscious change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the classification algorithms developed in the machine learning literature, including the support vector machine and boosting, can be viewed as minimum contrast methods that minimize a convex surrogate of the 0–1 loss function. The convexity makes these algorithms computationally efficient. The use of a surrogate, however, has statistical consequences that must be balanced against the computational virtues of convexity. To study these issues, we provide a general quantitative relationship between the risk as assessed using the 0–1 loss and the risk as assessed using any nonnegative surrogate loss function. We show that this relationship gives nontrivial upper bounds on excess risk under the weakest possible condition on the loss function—that it satisfies a pointwise form of Fisher consistency for classification. The relationship is based on a simple variational transformation of the loss function that is easy to compute in many applications. We also present a refined version of this result in the case of low noise, and show that in this case, strictly convex loss functions lead to faster rates of convergence of the risk than would be implied by standard uniform convergence arguments. Finally, we present applications of our results to the estimation of convergence rates in function classes that are scaled convex hulls of a finite-dimensional base class, with a variety of commonly used loss functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This important work describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, Anthony and Bartlett develop a model of classification by real-output networks, and demonstrate the usefulness of classification with a "large margin." The authors explain the role of scale-sensitive versions of the Vapnik Chervonenkis dimension in large margin classification, and in real prediction. Key chapters also discuss the computational complexity of neural network learning, describing a variety of hardness results, and outlining two efficient, constructive learning algorithms. The book is self-contained and accessible to researchers and graduate students in computer science, engineering, and mathematics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gradient-based approaches to direct policy search in reinforcement learning have received much recent attention as a means to solve problems of partial observability and to avoid some of the problems associated with policy degradation in value-function methods. In this paper we introduce GPOMDP, a simulation-based algorithm for generating a biased estimate of the gradient of the average reward in Partially Observable Markov Decision Processes (POMDPs) controlled by parameterized stochastic policies. A similar algorithm was proposed by Kimura, Yamamura, and Kobayashi (1995). The algorithm's chief advantages are that it requires storage of only twice the number of policy parameters, uses one free parameter β ∈ [0,1) (which has a natural interpretation in terms of bias-variance trade-off), and requires no knowledge of the underlying state. We prove convergence of GPOMDP, and show how the correct choice of the parameter β is related to the mixing time of the controlled POMDP. We briefly describe extensions of GPOMDP to controlled Markov chains, continuous state, observation and control spaces, multiple-agents, higher-order derivatives, and a version for training stochastic policies with internal states. In a companion paper (Baxter, Bartlett, & Weaver, 2001) we show how the gradient estimates generated by GPOMDP can be used in both a traditional stochastic gradient algorithm and a conjugate-gradient procedure to find local optima of the average reward. ©2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.