554 resultados para 291800 Interdisciplinary Engineering
Resumo:
Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.
Resumo:
Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.
Resumo:
A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.
Resumo:
In the quest for shorter time-to-market, higher quality and reduced cost, model-driven software development has emerged as a promising approach to software engineering. The central idea is to promote models to first-class citizens in the development process. Starting from a set of very abstract models in the early stage of the development, they are refined into more concrete models and finally, as a last step, into code. As early phases of development focus on different concepts compared to later stages, various modelling languages are employed to most accurately capture the concepts and relations under discussion. In light of this refinement process, translating between modelling languages becomes a time-consuming and error-prone necessity. This is remedied by model transformations providing support for reusing and automating recurring translation efforts. These transformations typically can only be used to translate a source model into a target model, but not vice versa. This poses a problem if the target model is subject to change. In this case the models get out of sync and therefore do not constitute a coherent description of the software system anymore, leading to erroneous results in later stages. This is a serious threat to the promised benefits of quality, cost-saving, and time-to-market. Therefore, providing a means to restore synchronisation after changes to models is crucial if the model-driven vision is to be realised. This process of reflecting changes made to a target model back to the source model is commonly known as Round-Trip Engineering (RTE). While there are a number of approaches to this problem, they impose restrictions on the nature of the model transformation. Typically, in order for a transformation to be reversed, for every change to the target model there must be exactly one change to the source model. While this makes synchronisation relatively “easy”, it is ill-suited for many practically relevant transformations as they do not have this one-to-one character. To overcome these issues and to provide a more general approach to RTE, this thesis puts forward an approach in two stages. First, a formal understanding of model synchronisation on the basis of non-injective transformations (where a number of different source models can correspond to the same target model) is established. Second, detailed techniques are devised that allow the implementation of this understanding of synchronisation. A formal underpinning for these techniques is drawn from abductive logic reasoning, which allows the inference of explanations from an observation in the context of a background theory. As non-injective transformations are the subject of this research, there might be a number of changes to the source model that all equally reflect a certain target model change. To help guide the procedure in finding “good” source changes, model metrics and heuristics are investigated. Combining abductive reasoning with best-first search and a “suitable” heuristic enables efficient computation of a number of “good” source changes. With this procedure Round-Trip Engineering of non-injective transformations can be supported.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.
Resumo:
DIRECTOR’S OVERVIEW by Professor Mark Pearcy This report for 2009 is the first full year report for MERF. The development of our activities in 2009 has been remarkable and is testament to the commitment of the staff to the vision of MERF as a premier training and research facility. From the beginnings in 2003, when a need was identified for the provision of specialist research and training facilities to enable close collaboration between researchers and clinicians, to the realisation of the vision in 2009 has been an amazing journey. However, we have learnt that there is much more that can be achieved and the emphasis will be on working with the university, government and external partners to realise the full potential of MERF by further development of the Facility. In 2009 we conducted 28 workshops in the Anatomical and Surgical Skills Laboratory providing training for surgeons in the latest techniques. This was an excellent achievement for the first full year as our reputation for delivering first class facilities and support grows. The highlight, perhaps, was a course run via our video link by a surgeon in the USA directing the participants in MERF. In addition, we have continued to run a small number of workshops in the operating theatre and this promises to be an avenue that will be of growing interest. Final approval was granted for the QUT Body Bequest Program late in 2009 following the granting of an Anatomical Accepting Licence. This will enable us to expand our capabilities by provide better material for the workshops. The QUT Body Bequest Program will be launched early in 2010. The Biological Research Facility (BRF) conducted over 270 procedures in 2009. This is a wonderful achievement considering less then 40 were performed in 2008. The staff of the BRF worked very hard to improve the state of the old animal house and this resulted in approval for expanded use by the ethics committees of both QUT and the University of Queensland. An external agency conducted an Occupational Health and Safety Audit of MERF in 2009. While there were a number of small issues that require attention, the auditor congratulated the staff of MERF on achieving a good result, particularly for such an early stage in the development of MERF. The journey from commissioning of MERF in 2008 to the full implementation of its activities in 2009 has demonstrated the potential of this facility and 2010 will be an exciting year as its activities are recognised and further expanded building development is pursued.
Resumo:
For some time there has been a growing awareness of organizational culture and its impact on the functioning of engineering and maintenance departments. Those wishing to implement contemporary maintenance regimes (e.g. condition based maintenance) are often encouraged to develop “appropriate cultures” to support a new method’s introduction. Unfortunately these same publications often fail to specifically articulate the cultural values required to support those efforts. In the broader literature, only a limited number of case examples document the cultural values held by engineering asset intensive firms and how they contribute to their success (or failure). Consequently a gap exists in our knowledge of what engineering cultures currently might look like, or what might constitute a best practice engineering asset culture. The findings of a pilot study investigating the perceived ideal characteristics of engineering asset cultures are reported. Engineering managers, consultants and academics (n=47), were surveyed as to what they saw were essential attributes of both engineering cultures and engineering asset personnel. Valued cultural elements included those orientated around continuous improvement, safety and quality. Valued individual attributes included openness to change, interpersonal skills and conscientiousness. The paper concludes with a discussion regarding the development of a best practice cultural framework for practitioners and engineering managers.
Resumo:
This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.