375 resultados para 13368-014
Resumo:
The planning of IMRT treatments requires a compromise between dose conformity (complexity) and deliverability. This study investigates established and novel treatment complexity metrics for 122 IMRT beams from prostate treatment plans. The Treatment and Dose Assessor software was used to extract the necessary data from exported treatment plan files and calculate the metrics. For most of the metrics, there was strong overlap between the calculated values for plans that passed and failed their quality assurance (QA) tests. However, statistically significant variation between plans that passed and failed QA measurements was found for the established modulation index and for a novel metric describing the proportion of small apertures in each beam. The ‘small aperture score’ provided threshold values which successfully distinguished deliverable treatment plans from plans that did not pass QA, with a low false negative rate.
Resumo:
Introduction Since 1992 there have been several articles published on research on plastic scintillators for use in radiotherapy. Plastic scintillators are said to be tissue equivalent, temperature independent and dose rate independent [1]. Although their properties were found to be promising for measurements in megavoltage X-ray beams there were some technical difficulties with regards to its commercialisation. Standard Imaging has produced the first commercial system which is now available for use in a clinical setting. The Exradin W1 scintillator device uses a dual fibre system where one fibre is connected to the Plastic Scintillator and the other fibre only measures Cerenkov radiation [2]. This paper presents results obtained during commissioning of this dosimeter system. Methods All tests were performed on a Novalis Tx linear accelerator equipped with a 6 MV SRS photon beam and conventional 6 and 18 MV X-ray beams. The following measurements were performed in a Virtual Water phantom at a depth of dose maximum. Linearity: The dose delivered was varied between 0.2 and 3.0 Gy for the same field conditions. Dose rate dependence: For this test the repetition rate of the linac was varied between 100 and 1,000 MU/min. A nominal dose of 1.0 Gy was delivered for each rate. Reproducibility: A total of five irradiations for the same setup. Results The W1 detector gave a highly linear relationship between dose and the number of Monitor Units delivered for a 10 9 10 cm2 field size at a SSD of 100 cm. The linearity was within 1 % for the high dose end and about 2 % for the very low dose end. For the dose rate dependence, the dose measured as a function of repetition the rate (100–1,000 MU/min) gave a maximum deviation of 0.9 %. The reproducibility was found to be better than 0.5 %. Discussion and conclusions The results for this system look promising so far being a new dosimetry system available for clinical use. However, further investigation is needed to produce a full characterisation prior to use in megavoltage X-ray beams.
Resumo:
Introduction The dose to skin surface is an important factor for many radiotherapy treatment techniques. It is known that TPS predicted surface doses can be significantly different from actual ICRP skin doses as defined at 70 lm. A number of methods have been implemented for the accurate determination of surface dose including use of specific dosimeters such as TLDs and radiochromic film as well as Monte Carlo calculations. Stereotactic radiosurgery involves delivering very high doses per treatment fraction using small X-ray fields. To date, there has been limited data on surface doses for these very small field sizes. The purpose of this work is to evaluate surface doses by both measurements and Monte Carlo calculations for very small field sizes. Methods All measurements were performed on a Novalis Tx linear accelerator which has a 6 MV SRS X-ray beam mode which uses a specially thin flattening filter. Beam collimation was achieved by circular cones with apertures that gave field sizes ranging from 4 to 30 mm at the isocentre. The relative surface doses were measured using Gafchromic EBT3 film which has the active layer at a depth similar to the ICRP skin dose depth. Monte Carlo calculations were performed using the BEAMnrc/EGSnrc Monte Carlo codes (V4 r225). The specifications of the linear accelerator, including the collimator, were provided by the manufacturer. Optimisation of the incident X-ray beam was achieved by an iterative adjustment of the energy, spatial distribution and radial spread of the incident electron beam striking the target. The energy cutoff parameters were PCUT = 0.01 MeV and ECUT = 0.700 - MeV. Directional bremsstrahlung splitting was switched on for all BEAMnrc calculations. Relative surface doses were determined in a layer defined in a water phantom of the same thickness and depth as compared to the active later in the film. Results Measured surface doses using the EBT3 film varied between 13 and 16 % for the different cones with an uncertainty of 3 %. Monte Carlo calculated surface doses were in agreement to better than 2 % to the measured doses for all the treatment cones. Discussion and conclusions This work has shown the consistency of surface dose measurements using EBT3 film with Monte Carlo predicted values within the uncertainty of the measurements. As such, EBT3 film is recommended for in vivo surface dose measurements.
Resumo:
Introduction The consistency of measuring small field output factors is greatly increased by reporting the measured dosimetric field size of each factor, as opposed to simply stating the nominal field size [1] and therefore requires the measurement of cross-axis profiles in a water tank. However, this makes output factor measurements time consuming. This project establishes at which field size the accuracy of output factors are not affected by the use of potentially inaccurate nominal field sizes, which we believe establishes a practical working definition of a ‘small’ field. The physical components of the radiation beam that contribute to the rapid change in output factor at small field sizes are examined in detail. The physical interaction that dominates the cause of the rapid dose reduction is quantified, and leads to the establishment of a theoretical definition of a ‘small’ field. Methods Current recommendations suggest that radiation collimation systems and isocentre defining lasers should both be calibrated to permit a maximum positioning uncertainty of 1 mm [2]. The proposed practical definition for small field sizes is as follows: if the output factor changes by ±1.0 % given a change in either field size or detector position of up to ±1 mm then the field should be considered small. Monte Carlo modelling was used to simulate output factors of a 6 MV photon beam for square fields with side lengths from 4.0 to 20.0 mm in 1.0 mm increments. The dose was scored to a 0.5 mm wide and 2.0 mm deep cylindrical volume of water within a cubic water phantom, at a depth of 5 cm and SSD of 95 cm. The maximum difference due to a collimator error of ±1 mm was found by comparing the output factors of adjacent field sizes. The output factor simulations were repeated 1 mm off-axis to quantify the effect of detector misalignment. Further simulations separated the total output factor into collimator scatter factor and phantom scatter factor. The collimator scatter factor was further separated into primary source occlusion effects and ‘traditional’ effects (a combination of flattening filter and jaw scatter etc.). The phantom scatter was separated in photon scatter and electronic disequilibrium. Each of these factors was plotted as a function of field size in order to quantify how each affected the change in small field size. Results The use of our practical definition resulted in field sizes of 15 mm or less being characterised as ‘small’. The change in field size had a greater effect than that of detector misalignment. For field sizes of 12 mm or less, electronic disequilibrium was found to cause the largest change in dose to the central axis (d = 5 cm). Source occlusion also caused a large change in output factor for field sizes less than 8 mm. Discussion and conclusions The measurement of cross-axis profiles are only required for output factor measurements for field sizes of 15 mm or less (for a 6 MV beam on Varian iX linear accelerator). This is expected to be dependent on linear accelerator spot size and photon energy. While some electronic disequilibrium was shown to occur at field sizes as large as 30 mm (the ‘traditional’ definition of small field [3]), it has been shown that it does not cause a greater change than photon scatter until a field size of 12 mm, at which point it becomes by far the most dominant effect.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
Introduction This study aimed to examine the geometric and dosimetric results when radiotherapy treatment plans are designed for prostate cancer patients with hip prostheses. Methods Ten EBRT treatment plans for localised prostate cancer, in the presence of hip prostheses, were analysed and compared with a reference set of 196 treatment plans for localised prostate cancer in patients without prostheses. Crowe et al.’s TADA code [1] was used to extract treatment plan parameters and evaluate doses to target volumes and critical structures against recommended goals [2] and constraints [3, 4]. Results The need to avoid transmitting the radiation beam through the hip prostheses limited the range of gantry angles available for use in both the rotational (VMAT) and the non-rotational (3DCRT and IMRT) radiotherapy treatments. This geometric limitation (exemplified in the VMAT data shown in Fig. 1) reduced the overall quality of the treatment plans for patients with prostheses compared to the reference plans. All plans with prostheses failed the PTV dose homogeneity requirement [2], whereas only 4 % of the plans without prostheses failed this test. Several treatment plans for patients with hip prostheses also failed the QUANTEC requirements that less than 50 % of the rectum receive 50 Gy and less than 35 % of the rectum receive 60 Gy to keep the grade 3 toxicity rate below 10 % [3], or the Hansen and Roach requirement that less than 25 % of the bladder receive 75 Gy [4]. Discussion and conclusions The results of this study exemplify the difficulty of designing prostate radiotherapy treatment plans, where beams provide adequate doses to targeted tissues while avoiding nearby organs at risk, when the presence of hip prostheses limits the available treatment geometries. This work provides qualitative evidence of the compromised dose distributions that can result, in such cases.
Resumo:
Introduction Due to their high spatial resolution diodes are often used for small field relative output factor measurements. However, a field size specific correction factor [1] is required and corrects for diode detector over-response at small field sizes. A recent Monte Carlo based study has shown that it is possible to design a diode detector that produces measured relative output factors that are equivalent to those in water. This is accomplished by introducing an air gap at the upstream end of the diode [2]. The aim of this study was to physically construct this diode by placing an ‘air cap’ on the end of a commercially available diode (the PTW 60016 electron diode). The output factors subsequently measured with the new diode design were compared to current benchmark small field output factor measurements. Methods A water-tight ‘cap’ was constructed so that it could be placed over the upstream end of the diode. The cap was able to be offset from the end of the diode, thus creating an air gap. The air gap width was the same as the diode width (7 mm) and the thickness of the air gap could be varied. Output factor measurements were made using square field sizes of side length from 5 to 50 mm, using a 6 MV photon beam. The set of output factor measurements were repeated with the air gap thickness set to 0, 0.5, 1.0 and 1.5 mm. The optimal air gap thickness was found in a similar manner to that proposed by Charles et al. [2]. An IBA stereotactic field diode, corrected using Monte Carlo calculated kq,clin,kq,msr values [3] was used as the gold standard. Results The optimal air thickness required for the PTW 60016 electron diode was 1.0 mm. This was close to the Monte Carlo predicted value of 1.15 mm2. The sensitivity of the new diode design was independent of field size (kq,clin,kq,msr = 1.000 at all field sizes) to within 1 %. Discussion and conclusions The work of Charles et al. [2] has been proven experimentally. An existing commercial diode has been converted into a correction-less small field diode by the simple addition of an ‘air cap’. The method of applying a cap to create the new diode leads to the diode being dual purpose, as without the cap it is still an unmodified electron diode.
Resumo:
Introduction This study investigated the sensitivity of calculated stereotactic radiotherapy and radiosurgery doses to the accuracy of the beam data used by the treatment planning system. Methods Two sets of field output factors were acquired using fields smaller than approximately 1 cm2, for inclusion in beam data used by the iPlan treatment planning system (Brainlab, Feldkirchen, Germany). One set of output factors were measured using an Exradin A16 ion chamber (Standard Imaging, Middleton, USA). Although this chamber has a relatively small collecting volume (0.007 cm3), measurements made in small fields using this chamber are subject to the effects of volume averaging, electronic disequilibrium and chamber perturbations. The second, more accurate, set of measurements were obtained by applying perturbation correction factors, calculated using Monte Carlo simulations according to a method recommended by Cranmer-Sargison et al. [1] to measurements made using a 60017 unshielded electron diode (PTW, Freiburg, Germany). A series of 12 sample patient treatments were used to investigate the effects of beam data accuracy on resulting planned dose. These treatments, which involved 135 fields, were planned for delivery via static conformal arcs and 3DCRT techniques, to targets ranging from prostates (up to 8 cm across) to meningiomas (usually more than 2 cm across) to arterioveinous malformations, acoustic neuromas and brain metastases (often less than 2 cm across). Isocentre doses were calculated for all of these fields using iPlan, and the results of using the two different sets of beam data were evaluated. Results While the isocentre doses for many fields are identical (difference = 0.0 %), there is a general trend for the doses calculated using the data obtained from corrected diode measurements to exceed the doses calculated using the less-accurate Exradin ion chamber measurements (difference\0.0 %). There are several alarming outliers (circled in the Fig. 1) where doses differ by more than 3 %, in beams from sample treatments planned for volumes up to 2 cm across. Discussion and conclusions These results demonstrate that treatment planning dose calculations for SRT/SRS treatments can be substantially affected when beam data for fields smaller than approximately 1 cm2 are measured inaccurately, even when treatment volumes are up to 2 cm across.
Resumo:
Introduction Given the known challenges of obtaining accurate measurements of small radiation fields, and the increasing use of small field segments in IMRT beams, this study examined the possible effects of referencing inaccurate field output factors in the planning of IMRT treatments. Methods This study used the Brainlab iPlan treatment planning system to devise IMRT treatment plans for delivery using the Brainlab m3 microMLC (Brainlab, Feldkirchen, Germany). Four pairs of sample IMRT treatments were planned using volumes, beams and prescriptions that were based on a set of test plans described in AAPM TG 119’s recommendations for the commissioning of IMRT treatment planning systems [1]: • C1, a set of three 4 cm volumes with different prescription doses, was modified to reduce the size of the PTV to 2 cm across and to include an OAR dose constraint for one of the other volumes. • C2, a prostate treatment, was planned as described by the TG 119 report [1]. • C3, a head-and-neck treatment with a PTV larger than 10 cm across, was excluded from the study. • C4, an 8 cm long C-shaped PTV surrounding a cylindrical OAR, was planned as described in the TG 119 report [1] and then replanned with the length of the PTV reduced to 4 cm. Both plans in each pair used the same beam angles, collimator angles, dose reference points, prescriptions and constraints. However, one of each pair of plans had its beam modulation optimisation and dose calculation completed with reference to existing iPlan beam data and the other had its beam modulation optimisation and dose calculation completed with reference to revised beam data. The beam data revisions consisted of increasing the field output factor for a 0.6 9 0.6 cm2 field by 17 % and increasing the field output factor for a 1.2 9 1.2 cm2 field by 3 %. Results The use of different beam data resulted in different optimisation results with different microMLC apertures and segment weightings between the two plans for each treatment, which led to large differences (up to 30 % with an average of 5 %) between reference point doses in each pair of plans. These point dose differences are more indicative of the modulation of the plans than of any clinically relevant changes to the overall PTV or OAR doses. By contrast, the maximum, minimum and mean doses to the PTVs and OARs were smaller (less than 1 %, for all beams in three out of four pairs of treatment plans) but are more clinically important. Of the four test cases, only the shortened (4 cm) version of TG 119’s C4 plan showed substantial differences between the overall doses calculated in the volumes of interest using the different sets of beam data and thereby suggested that treatment doses could be affected by changes to small field output factors. An analysis of the complexity of this pair of plans, using Crowe et al.’s TADA code [2], indicated that iPlan’s optimiser had produced IMRT segments comprised of larger numbers of small microMLC leaf separations than in the other three test cases. Conclusion: The use of altered small field output factors can result in substantially altered doses when large numbers of small leaf apertures are used to modulate the beams, even when treating relatively large volumes.
Resumo:
Introduction This study investigates uncertainties pertaining to the use of optically stimulated luminescence dosimeters (OSLDs) in radiotherapy dosimetry. The sensitivity of the luminescent material is related to the density of recombination centres [1], which is in the range of 1015–1016 cm-3. Because of this non-uniform distribution of traps in crystal growth the sensitivity varies substantially within a batch of dosimeters. However, a quantitative understanding of the relationship between the response of an OSLD and its sensitive volume has not yet been investigated or reported in literature. Methods In this work, OSLDs are scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. Results When extrapolating the sensitive volume’s radiodensity from the CT data, it was shown that there is a non-uniform distribution incrystal growth as illustrated in Fig. 1. A plot of voxel count versus the element-specific correction factor is shown in Fig. 2 where each point represents a single OSLD. A line was fitted which has an R2-value of 0.69 and a P-value of 8.21 9 10-19. This data shows that the response of a dosimeter decreases proportionally with sensitive volume. Extrapolating from this data, a quantitative relationship between response and sensitive volume was roughly determined for this batch of dosimeters. A change in volume of 1.176 9 10-5 cm3 corresponds to a 1 % change in response. In other words, a 0.05 % change in the nominal volume of the chip would result in a 1 % change in response. Discussion and conclusions This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor. Furthermore, the ‘true’ volume of an OSLD’s sensitive material is, on average, 17.90 % less than that which has been reported in literature, mainly due to the presence of air cavities in the material’s structure. Finally, the potential effects of the inaccuracy of Al2O3:C deposition increases with decreasing chip size. If a luminescent dosimeter were manufactured with a smaller volume than currently employed using the same manufacturing protocol, the variation in response from chip to chip would more than likely exceed the current 5 % range.
Resumo:
In order to continue to maintain public trust and confidence in human research, participants must be treated with respect. Researchers and Human Research Ethics Committee members need to be aware that modern considerations of this value include: the need for a valid consenting process, the protection of participants who have their capacity for consent compromised; the promotion of dignity for participants; and the effects that human research may have on cultures and communities. This paper explains the prominence of respect as a value when considering the ethics of human research and provides practical advice for both researchers and Human Research Ethics Committee members in developing respectful research practices.
Resumo:
Negative ion photoelectron spectroscopy has been used to study the HCCN- and HCNC- ions. The electron affinities (EA) of cyanocarbene have been measured to be EA(HCCN (X) over tilde (3)Sigma(-)=2.003+/-0.014 eV and EA(DCCN (X) over tilde (3)Sigma(-))=2.009+/-0.020 eV. Photodetachment of HCCN- to HCCN (X) over tilde (3)Sigma(-) shows a 0.4 eV long vibrational progression in nu(5), the H-CCN bending mode; the HCCN- photoelectron spectra reveal excitations up to 10 quanta in nu(5). The term energies for the excited singlet state are found to be T-0(HCCN (a) over tilde (1)A('))=0.515+/-0.016 eV and T-0(DCCN (a) over tilde (1)A('))=0.518+/-0.027 eV. For the isocyanocarbene, the two lowest states switch and HCNC has a singlet ground state and an excited triplet state. The electron affinities are EA(HCNC (X) over tilde (1)A('))=1.883+/-0.013 eV and EA((X) over tilde (1)A(') DCNC)=1.877+/-0.010 eV. The term energy for the excited triplet state is T-0(HCNC (a) over tilde (3)A("))=0.050+/-0.028 eV and T-0(DCNC (a) over tilde (3)A("))=0.063+/-0.030 eV. Proton transfer kinetics in a flowing afterglow apparatus were used to re-measure the enthalpy of deprotonation of CH3NC to be Delta(acid)H(298)(CH3NC)=383.6+/-0.6 kcal mol(-1). The acidity/EA thermodynamic cycle was used to deduce D-0(H-CHCN)=104+/-2 kcal mol(-1) [Delta(f)H(0)(HCCN)=110+/-4 kcal mol(-1)] and D-0(H-CHNC)=106+/-4 kcal mol(-1) [Delta(f)H(0)(HCNC)=133+/-5 kcal mol(-1)]. (C) 2002 American Institute of Physics.
Resumo:
This study investigated the relative contribution of individual, workplace, psychosocial and physiological features associated with neck pain in female office workers towards developing appropriate intervention programs. Workers without disability (Neck Disability Index (NDI) score≤8, n=33); workers with neck pain and disability (NDI≥9/100, n=52) and 22 controls (women who did not work and without neck pain) participated in this study. Two logistic regression models were constructed to test the association between various measures in (1) workers with and without disability, and (2) workers without disability and controls. Measures included those found to be significantly associated with higher NDI in our previous studies: psychosocial domains; individual factors; task demands; quantitative sensory measures and measures of motor function. In the final model, higher score on negative affectivity scale (OR=4.47), greater activity in the neck flexors during cranio-cervical flexion (OR=1.44), cold hyperalgesia (OR=1.27) and longer duration of symptoms (OR=1.19) remained significantly associated with neck pain in workers. Workers without disability and controls could only be differentiated by greater muscle activity in the cervical flexors and extensors during a typing task. No psychosocial domains remained in either regression model. These results suggest that impairments in the sensory and motor system should be considered in any assessment of the office worker with neck pain and may have stronger influences on the presenting symptoms than workplace and psychosocial features.
Resumo:
This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.
Resumo:
Background Rapid developments in technology have encouraged the use of smartphones in physical activity research, although little is known regarding their effectiveness as measurement and intervention tools. Objective This study systematically reviewed evidence on smartphones and their viability for measuring and influencing physical activity. Data Sources Research articles were identified in September 2013 by literature searches in Web of Knowledge, PubMed, PsycINFO, EBSCO, and ScienceDirect. Study Selection The search was restricted using the terms (physical activity OR exercise OR fitness) AND (smartphone* OR mobile phone* OR cell phone*) AND (measurement OR intervention). Reviewed articles were required to be published in international academic peer-reviewed journals, or in full text from international scientific conferences, and focused on measuring physical activity through smartphone processing data and influencing people to be more active through smartphone applications. Study Appraisal and Synthesis Methods Two reviewers independently performed the selection of articles and examined titles and abstracts to exclude those out of scope. Data on study characteristics, technologies used to objectively measure physical activity, strategies applied to influence activity; and the main study findings were extracted and reported. Results A total of 26 articles (with the first published in 2007) met inclusion criteria. All studies were conducted in highly economically advantaged countries; 12 articles focused on special populations (e.g. obese patients). Studies measured physical activity using native mobile features, and/or an external device linked to an application. Measurement accuracy ranged from 52 to 100 % (n = 10 studies). A total of 17 articles implemented and evaluated an intervention. Smartphone strategies to influence physical activity tended to be ad hoc, rather than theory-based approaches; physical activity profiles, goal setting, real-time feedback, social support networking, and online expert consultation were identified as the most useful strategies to encourage physical activity change. Only five studies assessed physical activity intervention effects; all used step counts as the outcome measure. Four studies (three pre–post and one comparative) reported physical activity increases (12–42 participants, 800–1,104 steps/day, 2 weeks–6 months), and one case-control study reported physical activity maintenance (n = 200 participants; >10,000 steps/day) over 3 months. Limitations Smartphone use is a relatively new field of study in physical activity research, and consequently the evidence base is emerging. Conclusions Few studies identified in this review considered the validity of phone-based assessment of physical activity. Those that did report on measurement properties found average-to-excellent levels of accuracy for different behaviors. The range of novel and engaging intervention strategies used by smartphones, and user perceptions on their usefulness and viability, highlights the potential such technology has for physical activity promotion. However, intervention effects reported in the extant literature are modest at best, and future studies need to utilize randomized controlled trial research designs, larger sample sizes, and longer study periods to better explore the physical activity measurement and intervention capabilities of smartphones.