165 resultados para sputtering pressure
Resumo:
Pure and W-doped ZnO thin films were obtained using magnetron sputtering at working pressures of 0.4 Pa and 1.33 Pa. The films were deposited on glass and alumina substrates at room temperature and subsequently annealed at 400oC for 1 hour in air. The effects of pressure and W-doping on the structure, chemical, optical and electronic properties of the ZnO films for gas sensing were examined. From AFM, the doped film deposited at higher pressure (1.33 Pa) has spiky morphology with much lower grain density and porosity compared to the doped film deposited at 0.4 Pa. The average gain size and roughness of the annealed films were estimated to be 65 nm and 2.2 nm, respectively with slightly larger grain size and roughness appeared in the doped films. From XPS the films deposited at 1.33 Pa favored the formation of adsorbed oxygen on the film surface and this has been more pronounced in the doped film which created active sites for OH adsorption. As a consequence the W-doped film deposited at 1.33 Pa was found to have lower oxidation state of W (35.1 eV) than the doped film deposited at 0.4 Pa (35.9 eV). Raman spectra indicated that doping modified the properties of the ZnO film and induced free-carrier defects. The transmittance of the samples also reveals an enhanced free-carrier density in the W-doped films. The refractive index of the pure film was also found to increase from 1.7 to 2.2 after W-doping whereas the optical band gap only slightly increased. The W-doped ZnO film deposited at 0.4 Pa appeared to have favorable properties for enhanced gas sensing. This film showed significantly higher sensing performance towards 5-10 ppm NO2 at lower operating temperature of 150oC most dominantly due to increased free-carrier defects achieved by W-doping.
Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN
Resumo:
Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications.
Resumo:
Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.
Resumo:
Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure.----- Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer.----- Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate.----- Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping.----- Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
This article observes a paradox in the recent history of the Special Broadcasting Service. It is argued that, in contrast to the Australian Broadcasting Corporation, the role and general direction of SBS were not extensively debated as part of the ‘culture wars’ that occurred during the years of the Howard government. While that made SBS a less fraught space during that period, it may now be a factor in the comparative lack of support being given by the Rudd Labor government to SBS in comparison with the ABC, as some of the ‘special’ status of SBS has been blunted by its drift towards more mainstream programming and a mixed economy of commercial advertising, as well as government funding.