141 resultados para sets of words


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling how a word is activated in human memory is an important requirement for determining the probability of recall of a word in an extra-list cueing experiment. The spreading activation, spooky-action-at-a-distance and entanglement models have all been used to model the activation of a word. Recently a hypothesis was put forward that the mean activation levels of the respective models are as follows: Spreading � Entanglment � Spooking-action-at-a-distance This article investigates this hypothesis by means of a substantial empirical analysis of each model using the University of South Florida word association, rhyme and word norms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines a case of academic plagiarism and the subsequent treatment of the issues across several academic institutions. It calls for academic leaders in universities to act on what constitutes a serious breach of standards, engendered in part by broader institutional norms and values promoting the need for publications in a ‘publish or perish’ environment. While universities often promote high-sounding ideals and would generally wish to be seen to uphold high academic standards, it is argued that silence and complicity surround the way in which instances of plagiarism in academic publications are often dealt with. Actions (and inaction) by academic leaders in universities in dealing with cases of academic plagiarism speak volumes in terms of the values academic institutions profess, and those they actually uphold. The paper prompts readers to consider the need for a more consistent and proactive stance on the part of their own institutions to exercise ethical leadership in identifying and addressing academic plagiarism when it occurs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time and space are fundamental to human language and embodied cognition. In our early work we investigated how Lingodroids, robots with the ability to build their own maps, could evolve their own geopersonal spatial language. In subsequent studies we extended the framework developed for learning spatial concepts and words to learning temporal intervals. This paper considers a new aspect of time, the naming of concepts like morning, afternoon, dawn, and dusk, which are events that are part of day-night cycles, but are not defined by specific time points on a clock. Grounding of such terms refers to events and features of the diurnal cycle, such as light levels. We studied event-based time in which robots experienced day-night cycles that varied with the seasons throughout a year. Then we used meet-at tasks to demonstrate that the words learned were grounded, where the times to meet were morning and afternoon, rather than specific clock times. The studies show how words and concepts for a novel aspect of cyclic time can be grounded through experience with events rather than by times as measured by clocks or calendars

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explored whether semantic and motor systems are functionally interwoven via the use of a dual-task paradigm. According to embodied language accounts that propose an automatic and necessary involvement of the motor system in conceptual processing, concurrent processing of hand-related information should interfere more with hand movements than processing of unrelated body-part (i.e., foot, mouth) information. Across three experiments, 100 right-handed participants performed left- or right-hand tapping movements while repeatedly reading action words related to different body-parts, or different body-part names, in both aloud and silent conditions. Concurrent reading of single words related to specific body-parts, or the same words embedded in sentences differing in syntactic and phonological complexity (to manipulate context-relevant processing), and reading while viewing videos of the actions and body-parts described by the target words (to elicit visuomotor associations) all interfered with right-hand but not left-hand tapping rate. However, this motor interference was not affected differentially by hand-related stimuli. Thus, the results provide no support for proposals that body-part specific resources in cortical motor systems are shared between overt manual movements and meaning-related processing of words related to the hand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this video, a male voice recites a script comprised entirely of jokes. Words flash on screen in time with the spoken words. Sometimes the two sets of words match, and sometimes they differ. This work examines processes of signification. It emphasizes disruption and disconnection as fundamental and generative operations in making meaning. Extending on post-structural and deconstructionist ideas, this work questions the relationship between written and spoken words. By deliberately confusing the signifying structures of jokes and narratives, it questions the sites and mechanisms of comprehension, humour and signification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this video, a male voice recites a teenage love poem. Words flash on screen in time with the spoken words. Sometimes the two sets of words match, and sometimes they differ. This work examines processes of signification. It emphasizes disruption and disconnection as fundamental and generative operations in making meaning. Extending on post-structural and deconstructionist ideas, this work questions the relationship between written and spoken words. By actively disrupting the sincerity of a teenage love poem, it questions the sites and mechanisms of comprehension, poetry and signification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores two matrix methods to induce the ``shades of meaning" (SoM) of a word. A matrix representation of a word is computed from a corpus of traces based on the given word. Non-negative Matrix Factorisation (NMF) and Singular Value Decomposition (SVD) compute a set of vectors corresponding to a potential shade of meaning. The two methods were evaluated based on loss of conditional entropy with respect to two sets of manually tagged data. One set reflects concepts generally appearing in text, and the second set comprises words used for investigations into word sense disambiguation. Results show that for NMF consistently outperforms SVD for inducing both SoM of general concepts as well as word senses. The problem of inducing the shades of meaning of a word is more subtle than that of word sense induction and hence relevant to thematic analysis of opinion where nuances of opinion can arise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquity of multimodality in hypermedia environments is undeniable. Bezemer and Kress (2008) have argued that writing has been displaced by image as the central mode for representation. Given the current technical affordances of digital technology and user-friendly interfaces that enable the ease of multimodal design, the conspicuous absence of images in certain domains of cyberspace is deserving of critical analysis. In this presentation, I examine the politics of discourses implicit within hypertextual spaces, drawing textual examples from a higher education website. I critically examine the role of writing and other modes of production used in what Fairclough (1993) refers to as discourses of marketisation in higher education, tracing four pervasive discourses of teaching and learning in the current economy: i) materialization, ii) personalization, iii) technologisation, and iv) commodification (Fairclough, 1999). Each of these arguments is supported by the critical analysis of multimodal texts. The first is a podcast highlighting the new architectonic features of a university learning space. The second is a podcast and transcript of a university Open Day interview with prospective students. The third is a time-lapse video showing the construction of a new science and engineering precinct. These three multimodal texts contrast a final web-based text that exhibits a predominance of writing and the powerful absence or silencing of the image. I connect the weightiness of words and the function of monomodality in the commodification of discourses, and its resistance to the multimodal affordances of web-based technologies, and how this is used to establish particular sets of subject positions and ideologies through which readers are constrained to occupy. Applying principles of critical language study by theorists that include Fairclough, Kress, Lemke, and others whose semiotic analysis of texts focuses on the connections between language, power, and ideology, I demonstrate how the denial of image and the privileging of written words in the multimodality of cyberspace is an ideological effect to accentuate the dominance of the institution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research explored the feasibility of using multidimensional scaling (MDS) analysis in novel combination with other techniques to study comprehension of epistemic adverbs expressing doubt and certainty (e.g., evidently, obviously, probably) as they relate to health communication in clinical settings. In Study 1, Australian English speakers performed a dissimilarity-rating task with sentence pairs containing the target stimuli, presented as "doctors' opinions". Ratings were analyzed using a combination of cultural consensus analysis (factor analysis across participants), weighted-data classical-MDS, and cluster analysis. Analyses revealed strong within-community consistency for a 3-dimensional semantic space solution that took into account individual differences, strong statistical acceptability of the MDS results in terms of stress and explained variance, and semantic configurations that were interpretable in terms of linguistic analyses of the target adverbs. The results confirmed the feasibility of using MDS in this context. Study 2 replicated the results with Canadian English speakers on the same task. Semantic analyses and stress decomposition analysis were performed on the Australian and Canadian data sets, revealing similarities and differences between the two groups. Overall, the results support using MDS to study comprehension of words critical for health communication, including in future studies, for example, second language speaking patients and/or practitioners. More broadly, the results indicate that the techniques described should be promising for comprehension studies in many communicative domains, in both clinical settings and beyond, and including those targeting other aspects of language and focusing on comparisons across different speech communities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The capacity to identify, interpret, and prioritise environmental issues is critical in the management of corporate reputation. In spite of the significance of these abilities for corporate reputation management, there has been little effort to document and describe internal organizational influences on these capacities. Contrary to this state of affairs in the discipline of public relations, a long history of ethnographic research in cultural anthropology documents how sets of shared environmental perceptions can influence and moderate environmental factors in cultural populations (see for example, Durham, 1991 ). This study explores how cultural “frames of reference” derived from shared values and assumptions among organizational members influence organizational perceptions, and consequently, organizational actions. Specifically, this study explores how a central attribute of organizational culture--the property of cultural selection-- influences perceptions of organizational reputation held by organizational members. Perceptions of reputation among organizational members are obvious drivers to both the nature of and rationale for organizational communication strategies and responses. These perceptions are the result of collective processes that synthesise (with varying degrees of consensus) member conceptualisations, interpretations, and representations of the environmental realities in which their organization operate. To explore how cultural selection influences member perceptions of organizational reputation, this study employs ethnographic research including 20 depth interviews and six months of organizational observation in the focal organization. We argue that while external indicators of organizational reputation are acknowledged by members as significant, the internal action of cultural selection is a far stronger influence on organizational action.