286 resultados para relaxation processes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Charging of micron-size particulates, often appearing in fluorocarbon plasma etching experiments, is considered. It is shown that in inductively coupled and microwave slot-excited plasmas of C4F8 and Ar gas mixtures, the equilibrium particle charge and charge relaxation processes are controlled by a combination of microscopic electron, atomic (Ar+ and F+), and molecular ion (CF+ 3, CF+ 2, and CF+) currents. The impact of molecular ion currents on the particulate charging and charge relaxation processes is analyzed. It is revealed that in low-power (<0.5 kW) microwave slot-excited plasmas, the impact of the combined molecular ion current to the total positive microscopic current on the particle can be as high as 40%. The particulate charge relaxation rate in fluorocarbon plasmas appears to exceed 108 s-1, which is almost one order of magnitude higher than that from purely argon plasmas. This can be attributed to the impact of positive currents of fluorocarbon molecular ions, as well as to the electron density fluctuations with particle charge, associated with electron capture and release by the particulates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quadrupole coupling constants (qcc) for39K and23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of39K in glycerol is found to be 1.7 MHz, and that of23Na is 1.6 MHz. The relaxation behavior of39K and23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τc is not simply proportional to the ratio of viscosity/temperature (ηT). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T2 measurements of39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of39K in tissue. Similar results and conclusions are found for23Na.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effects of lane-changing in driver behavior by measuring (i) the induced transient behavior and (ii) the change in driver characteristics, i.e., changes in driver response time and minimum spacing. We find that the transition largely consists of a pre-insertion transition and a relaxation process. These two processes are different but can be reasonably captured with a single model. The findings also suggest that lane-changing induces a regressive effect on driver characteristics: a timid driver (characterized by larger response time and minimum spacing) tends to become less timid and an aggressive driver less aggressive. We offer an extension to Newell’s car-following model to describe this regressive effect and verify it using vehicle trajectory data.