216 resultados para process concentrated work
Resumo:
Process models are used by information professionals to convey semantics about the business operations in a real world domain intended to be supported by an information system. The understandability of these models is vital to them actually being used. After all, what is not understood cannot be acted upon. Yet until now, understandability has primarily been defined as an intrinsic quality of the models themselves. Moreover, those studies that looked at understandability from a user perspective have mainly conceptualized users through rather arbitrary sets of variables. In this paper we advance an integrative framework to understand the role of the user in the process of understanding process models. Building on cognitive psychology, goal-setting theory and multimedia learning theory, we identify three stages of learning required to realize model understanding, these being Presage, Process, and Product. We define eight relevant user characteristics in the Presage stage of learning, three knowledge construction variables in the Process stage and three potential learning outcomes in the Product stage. To illustrate the benefits of the framework, we review existing process modeling work to identify where our framework can complement and extend existing studies.
Resumo:
Aim Evaluation or assessment of competence is an important step to ensure the safety and efficacy of health professionals, including dietitians. Most competency-based assessment studies are focussed on valid and reliable methods of assessment for the preparation of entry-level dietitians, few papers have explored student dietitians’ perceptions of these evaluations. This study aimed to explore the perceptions of recent graduates from accredited nutrition and dietetics training programs in Australia. It also aimed to establish the relevance of competency-based assessment to adequately prepare them for entry-level work roles. Methods A purposive sample of newly-graduated dietitians with a range of assessment experiences and varied employment areas was recruited. A qualitative approach, using in-depth interviews with 13 graduates, with differing assessment experiences was undertaken. Graduates were asked to reflect upon their competency-based assessment experiences whilst a student. Data was thematically analysed by multiple authors. Results Four themes emerged from the data analysis: (i) Transparency and consistency are critical elements of work-based competency assessment. (ii) Students are willing to take greater responsibility in their assessment process. (iii) Work-based competency assessment prepares students for employment. (iv) The relationship between students and their assessors can impact on the student experience and their assessment performance. Conclusions Understanding this unique perspective of students can improve evaluation of future health professionals and assist in designing valid competency-based assessment approaches.
Resumo:
Maximisation of Knowledge-Based Development (KBD) benefits requires effective dissemination and utilisation mechanisms to accompany the initial knowledge creation process. This work highlights the potential for interactions between Supply Chains (SCs) and Small and Medium sized Enterprise Clusters (SMECs), (including via ‘junction’ firms which are members of both networks), to facilitate such effective dissemination and utilisation of knowledge. In both these network types there are firms that readily utilise their relationships and ties for ongoing business success through innovation. The following chapter highlights the potential for such beneficial interactions between SCs and SMECs in key elements of KBD, particularly knowledge management, innovation and technology transfer. Because there has been little focus on the interactions between SCs and SMECs, particularly when firms simultaneously belong to both, this chapter examines the conduits through which information and knowledge can be transferred and utilised. It shows that each network type has its own distinct advantages in the types of information searched for and transferred amongst network member firms. Comparing and contrasting these advantages shows opportunities for both networks to leverage the knowledge sharing strengths of each other, through these ‘junctions’ to address their own weaknesses, allowing implications to be drawn concerning new ways of utilising relationships for mutual network gains.
Resumo:
Any biomaterial implanted within the human body is influenced by the interactions that take place between its surface and the surrounding biological milieu. These interactions are known to influence the tissue interface dynamic, and thus act to emphasize the need to study cell-surface interactions as part of any biomaterial design process. The work described here investigates the relationship between human osteoblast attachment, spreading and focal contact formation on selected surfaces using immunostaining and digital image processing for vinculin, a key focal adhesion component. Our observations show that a relationship exists between levels of cell attachment, the degree of vinculin-associated plaque formation and biocompatibility. It also suggests that cell adhesion is not indicative of how supportive a substrate is to cell spreading, and that cell spreading
Resumo:
In this paper, we examine the design of business process diagrams in contexts where novice analysts only have basic design tools such as paper and pencils available, and little to no understanding of formalized modeling approaches. Based on a quasi-experimental study with 89 BPM students, we identify five distinct process design archetypes ranging from textual to hybrid, and graphical representation forms. We also examine the quality of the designs and identify which representation formats enable an analyst to articulate business rules, states, events, activities, temporal and geospatial information in a process model. We found that the quality of the process designs decreases with the increased use of graphics and that hybrid designs featuring appropriate text labels and abstract graphical forms are well-suited to describe business processes. Our research has implications for practical process design work in industry as well as for academic curricula on process design.
Resumo:
Process modeling is an important design practice in organizational improvement projects. In this paper, we examine the design of business process diagrams in contexts where novice analysts only have basic design tools such as paper and pencils available, and little to no understanding of formalized modeling approaches. Based on a quasi-experimental study with 89 BPM students, we identify five distinct process design archetypes ranging from textual to hybrid and graphical representation forms. We examine the quality of the designs and identify which representation formats enable an analyst to articulate business rules, states, events, activities, temporal and geospatial information in a process model. We found that the quality of the process designs decreases with the increased use of graphics and that hybrid designs featuring appropriate text labels and abstract graphical forms appear well-suited to describe business processes. We further examine how process design preferences predict formalized process modeling ability. Our research has implications for practical process design work in industry as well as for academic curricula on process design.
Resumo:
This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks.
Resumo:
Being able to innovate has become a critical capability for many contemporary organizations in an effort to sustain their operations in the long run. However, existing innovation models that attempt to guide organizations emphasize different aspects of innovation (e.g., products, services or business models), different stages of innovation (e.g., ideation, implementation or operation) or different skills (e.g., development or crowdsourcing) that are necessary to innovate, in turn creating isolated pockets of understanding about different aspects of innovation. In order to yield more predictable innovation outcomes organizations need to understand what exactly they need to focus on, what capabilities they need to have and what is necessary in order to take an idea to market. This paper aims at constructing a framework for innovation that contributes to this understanding. We will focus on a number of different stages in the innovation process and highlight different types and levels of organizational, technological, individual and process capabilities required to manage the organizational innovation process. Our work offers a comprehensive conceptualization of innovation as a multi-level process model, and provides a range of implications for further empirical and theoretical examination.
Resumo:
A simple, effective and innovative approach based on low-pressure, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to rapidly synthesize Si quantum dots (QDs) embedded in an amorphous SiC (a-SiC) matrix at a low substrate temperature and without any commonly used hydrogen dilution. The experimental results clearly demonstrate that uniform crystalline Si QDs with a size of 3-4 nm embedded in the silicon-rich (carbon content up to 10.7at.%) a-SiC matrix can be formed from the reactive mixture of silane and methane gases, with high growth rates of ∼1.27-2.34 nm s-1 and at a low substrate temperature of 200 °C. The achievement of the high-rate growth of Si QDs embedded in the a-SiC without any commonly used hydrogen dilution is discussed based on the unique properties of the inductively coupled plasma-based process. This work is particularly important for the development of the all-Si tandem cell-based third generation photovoltaic solar cells.
Resumo:
An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.
Resumo:
"The architect Christopher Alexander once said that design is but “a residue of the all important process.” This cluster views the creative process through the scrim of drafts, sketches, mock-ups, rough cuts, and prototypes—the secondary output of art and design. Curated by Kari Kraus Co-curated by Amalia Levi"
Resumo:
Researchers in the field of occupational stress and well-being are increasingly interested in the role of emotion regulation in the work context. Emotion regulation has also been widely investigated in the area of lifespan developmental psychology, with findings indicating that the ability to modify one's emotions represents a domain in which age-related growth is possible. In this chapter, we integrate the literatures on aging, emotion regulation, and occupational stress and well-being. To this end, we review key theories and empirical findings in each of these areas, summarize existing research on age, emotion regulation, and stress and well-being at work, and develop a conceptual model on how aging affects emotion regulation and the stress process in work settings to guide future research. According to the model, age will affect: (1) what kinds of affective work events are encountered and how often; (2) the appraisal of and initial emotional response to affective work events (emotion generation), and; (3) the management of emotions and coping with affective work events (emotion regulation). The model has implications for researchers and practitioners who want to understand and facilitate successful emotion regulation and stress reduction in the workplace among different age groups.
Resumo:
Technology and Nursing Practice explains and critically engages with the practice implications of technology for nursing. It takes a broad view of technology, covering not only health informatics, but also 'tele-nursing' and the use of equipment in clinical practice.
Resumo:
Research investigating the transactional approach to the work stressor-employee adjustment relationship has described many negative main effects between perceived stressors in the workplace and employee outcomes. A considerable amount of literature, theoretical and empirical, also describes potential moderators of this relationship. Organizational identification has been established as a significant predictor of employee job-related attitudes. To date, research has neglected investigation of the potential moderating effect of organizational identification in the work stressor-employee adjustment relationship. On the basis of identity, subjective fit and sense of belonging literature it was predicted that higher perceptions of identification at multiple levels of the organization would mitigate the negative effect of work stressors on employee adjustment. It was expected, further, that more proximal, lower order identifications would be more prevalent and potent as buffers of stressors on strain. Predictions were tested with an employee sample from five organizations (N = 267). Hierarchical moderated multiple regression analyses revealed some support for the stress-buffering effects of identification in the prediction of job satisfaction and organizational commitment, particularly for more proximal (i.e., work unit) identification. These positive stress-buffering effects, however, were present for low identifiers in some situations. The present study represents an extension of the application of organizational identity theory by identifying the effects of organizational and workgroup identification on employee outcomes in the nonprofit context. Our findings will contribute to a better understanding of the dynamics in nonprofit organizations and therefore contribute to the development of strategy and interventions to deal with identity-based issues in nonprofits.